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ABSTRACT An ensemble of seven climate models from the North American Regional Climate Change Assessment
Program (NARCCAP) was used to examine uncertainty in simulated runoff changes from a base period
(1971–2000) to a future period (2041–2070) for the Churchill River basin, Labrador, Canada. Three
approximations for mean annual runoff from each ensemble member were included in the analysis: (i) atmospheric
moisture convergence, (ii) the balance between precipitation and evaporation, and (iii) instantaneous runoff output
from respective land-surface schemes. Using data imputation (i.e., reconstruction) and variance decomposition it
was found that choice of regional climate model (RCM) made the greatest contribution to uncertainty in the climate
change signal, whereas the boundary forcing of a general circulation model (GCM) played a smaller, though
non-negligible, role. It was also found that choice of runoff approximation made a substantial contribution to
uncertainty, falling between the contribution from RCM and GCM choice. The NARCCAP output and imputed
data were used to calculate mean and median annual changes and results were presented via probability
distribution functions to facilitate decision making. Mean and median increases in runoff for the basin were
found to be 11.2% and 8.9%, respectively.

RÉSUMÉ [Traduit par la rédaction] Nous avons utilisé un ensemble de sept modèles climatiques du North
American Regional Climate Change Assessment Program (NARCCAP) pour examiner l’incertitude dans les
changements du ruissellement simulé entre une période de référence (1971–2000) et une période future
(2041–2070) dans le bassin du fleuve Churchill, au Labrador, au Canada. L’analyse comportait trois
approximations pour le ruissellement annuel moyen selon chaque membre de l’ensemble : (i) la convergence de
l’humidité atmosphérique, (ii) l’équilibre entre les précipitations et l’évaporation et (iii) la sortie de ruissellement
instantané des schémas de surface respectifs. En utilisant l’imputation de données (c. à d. la reconstruction) et la
décomposition de la variance, nous avons trouvé que c’est le choix du modèle climatique régional qui a le plus
contribué à l’incertitude dans le signal de changement climatique, alors que le forçage aux limites d’un modèle
de circulation générale a joué un rôle moins important, quoique non négligeable. Il apparaît aussi que le choix
de l’approximation du ruissellement a apporté une contribution importante à l’incertitude, se situant entre celle
du choix du modèle climatique régional et celle du choix du modèle de circulation générale. Nous avons utilisé
la sortie du NARCCAP et les données imputées pour calculer les changements annuels dans la moyenne et la
médiane et nous avons présenté les résultats sous forme de fonctions de distribution de probabilités pour faciliter
la prise de décision. Il ressort que les accroissements pour la moyenne et la médiane du ruissellement dans le
bassin sont de 11,2% et 8,9%, respectivement.

KEYWORDS climate change; climate models; uncertainty; atmospheric water balance; terrestrial water balance;
ensemble analysis

1 Introduction

Climate change is already having a noticeable effect on earth’s
hydrological cycle (Déry, Hernández-Henríquez, Burford, &
Wood, 2009; Trenberth, Dai, Rasmussen, & Parsons, 2003).
As the changing climate’s influence becomes more apparent,
the need to investigate its potential impacts increases.
However, impact assessments are complicated by the

uncertainty present in all climate simulations. Uncertainty
results from having limited knowledge of how society will
develop and how the climate system will react to that develop-
ment. This leads to the inability to predict the impacts of climate
change exactly and necessitates the representation of a range of
possible outcomes (vis-à-vis uncertainty), for which informed
adaptation decisions can be made (Foley, 2010).
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Primary sources of uncertainty in climate change studies
include greenhouse gas emissions scenarios, climate model
selection, downscaling method, and sampling uncertainty
(Déqué et al., 2007; Maurer, 2007; Shrestha, Berland,
Schnorbus, & Werner, 2011; Thorne, 2011). Sampling uncer-
tainty, which exists because climate statistics are estimated
from a finite sample that does not cover the entire range of
natural variability, is often marginal (Déqué et al., 2007).
A notable exception is the case of estimating climate
extremes (e.g., 100-year return periods derived from 30
years of climate simulation). For hydrological impact
studies, the selection and implementation of a land-surface
hydrology model and the ability of a climate model to simu-
late the water cycle adequately, with its complex and multi-
scale processes, is also of interest (Music & Caya, 2007).
Multiple studies (e.g., Mitchell & Hulme, 1999; Wilby &
Harris, 2006) examined several of these sources of uncer-
tainty individually and described the “cascade of uncertainty”
and how it propagates from emissions scenario down to
sampling uncertainty.
It is unknown how society will develop in the coming

decades and, therefore, impossible to ascertain total atmos-
pheric greenhouse gas concentrations for the future. There
are several greenhouse gas emissions scenarios that
provide a range of plausible future pathways for carbon
dioxide, methane, and other greenhouse gas concentrations
(IPCC, 2000). In order for a climate study to capture this
uncertainty, multiple emissions scenarios would need to be
employed.
Uncertainty in climate modelling is introduced by an

incomplete understanding of the climate system and all its pro-
cesses, as well as an inability to fully and accurately represent
the processes that are understood. No single model is best at
simulating all aspects of the climate system (Christensen &
Christensen, 2007; Maraun et al., 2010), meaning a variety
of climate models that use different algorithms and parameter-
ization schemes (i.e., a multi-model ensemble) should be used
to address this type of uncertainty (Kotlarski et al., 2005;
Murphy et al., 2004).
Downscaling of a general circulation model (GCM) can be

divided into two approaches: (i) dynamic downscaling in
which a regional climate model (RCM) of relatively high res-
olution is driven at its geographic boundaries over a specific
region by a global GCM and (ii) statistical downscaling in
which a statistical relationship is established between large-
scale atmospheric variables and specific local situations
(Fowler, Blenkinsop, & Tebaldi, 2007). This study focuses
on dynamic downscaling, in which the choice of RCM intro-
duces an additional level of uncertainty because of differing
modelling structures, processes, and parameterization
schemes. Statistical downscaling methods, which also have
been found to introduce additional uncertainty, though less
than that of GCM choice (Chen, Brissette, Chaumont, &
Braun, 2013; Vano et al., 2014), are not discussed further here.
Parameterization schemes are methods of approximating

physical processes that occur on too small a scale to be

resolved by a climate model. Some examples of processes
that require parameterization schemes are large-scale conden-
sation, convection, soil processes, snow–albedo feedback, and
evaporation. All parameterizations contribute to bias in RCM
output (Fowler, Kilsby, & Stunell, 2007; Hagemann et al.,
2004), meaning that variables other than precipitation, which
is often a focus of hydrological studies, also contribute to
runoff bias (Gagnon, Konan, Rousseau, & Slivitzky, 2009).
This creates the need to analyze multiple components of the
simulated hydrological system to best capture uncertainty
when investigating the impacts of climate change on the
hydrology of a basin.

The primary constraint on quantifying the impacts of
climate change on water resources and the hydrological
system is often touted as GCM projection uncertainty
(Bennett, Werner, & Schnorbus, 2012; Minville, Brissette,
& Leconte, 2008; Wilby & Harris, 2006; Xu, Taylor, & Xu,
2011). Differences between individual GCMs have been
found to result in a larger impact on simulated hydrological
change than differing emissions scenarios (Graham, Andréas-
son, & Carlsson, 2007), though emissions scenarios still play a
role (Jasper, Calanca, Gyalistras, & Fuhrer, 2004). Thorne
(2011) found that even with a prescribed +2°C global mean
temperature change, a selection of GCMs gave different out-
comes for the Liard River Basin in northern Canada because
of differences in algorithms, parameterizations, and feedback
mechanisms. As such, it is recommended that multiple
GCMs should be selected for use in impact studies (Ghosh
& Mujumdar, 2009; Kingston, Thompson, & Kite, 2011;
Thorne, 2011).

The RCM formulation has been found to have a compar-
able, or sometimes dominant, influence on the uncertainty
of simulated variables (Déqué et al., 2007; Roberts, Pryse-
Phillips, & Snelgrove, 2012; Rowell, 2006), and relative con-
tributions to uncertainty vary according to spatial domain,
region, season, and variable (Déqué et al., 2005; Fowler,
Blenkinsop et al., 2007). GCMs and RCMs contribute
more uncertainty to simulated runoff than hydrological
models, though the influence of hydrological model selection
becomes stronger during low-flow periods and in arid water-
sheds (Maurer, Brekke, & Pruitt, 2010; Najafi, Moradkhani,
& Jung, 2011; Velázquez et al., 2013). Therefore, it is impor-
tant to include multiple climate models in a climate change
impact study to best capture the range of uncertainty
(Fowler, Blenkinsop et al., 2007; Hingray, Mezghani, &
Buishand, 2007).

There are many components of the hydrological system rep-
resented by climate models including the advection of moist
air in the atmosphere, precipitation and evaporation, as well
as runoff. The primary objective of this paper is to investigate
the importance of GCM and RCM uncertainty in the mean
runoff climate change signal compared with the choice of
mean runoff approximation as derived from atmospheric and
terrestrial water balance components. A secondary objective
is to investigate the climate change signal for mean annual
runoff in Labrador’s Churchill River basin.
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2 Background
a Churchill River Basin
TheChurchill River basin is located inNewfoundland and Lab-
rador, Canada, and has an area of approximately 92,500 km2.
The basin is sparsely populated but contains the sites for exist-
ing and future large-scale hydroelectric power production
facilities. At Muskrat Falls, the outlet located at the eastern
edge of the basin, a hydroelectric facility is currently under con-
struction. Figure 1 shows the location of the Churchill River
basin outlined by a thick black line. The resolution of Fig. 1
is the common 0.25 degree grid to which all RCM output was
regridded for this study. The soil is predominantly well-
drained podzolic soil in the forested areas that are dominated
by black spruce or poorly drained organic soil in the extensive
wetlands. Elevation ranges from 1550 m at the highest point in
the west to near sea level at the basin outlet in the east.
According to Environment Canada’s in situ meteorological

stations, the mean annual precipitation in the basin is 890 mm
(with an interannual standard deviation of 130 mm), with a
relatively even split between rain and snow (Environment
Canada, 2014). The mean annual temperature is −3.5°C with
a standard deviation of 1.1°C. There are only four observation
stations with multi-decadal records covering the entire basin,
so there is relatively large uncertainty in these values.
Observed mean annual streamflow at Muskrat Falls (the
basin outlet) is roughly 1825 m3 s−1 (Water Survey of
Canada, 2010), with a standard deviation of 255 m3 s−1.

It has been shown that even small changes in the distri-
bution of precipitation can significantly alter mean annual
runoff (Muzik, 2001). Additionally, modest perturbations in
natural inflow tend to have amplified effects on reservoir
storage levels (Christensen et al., 2004; Minville et al.,
2008). As such, the impact of climate change on the basin’s
runoff is of great interest.

b Climate Models
Frigon, Music, and Slivitzky (2010) and Eum, Gachon,
Laprise, and Ouarda (2012), among others, recommend
using the North American Regional Climate Change Assess-
ment Program (NARCCAP) for climate change and uncer-
tainty analysis. The NARCCAP is an international
collaboration designed to investigate the uncertainties in
future climate projections at a regional level using a design
of experiments (DOE) approach (Mearns et al., 2007, 2009).
It employs a selection of RCMs nested within multiple
GCMs. The GCMs provide the initial conditions for the
RCMs, as well as boundary conditions including large-scale
atmospheric fields, sea surface temperatures, and sea ice.
This boundary control from the GCMs constrains the RCM
simulation to be consistent with the global simulation, while
the higher resolution of the RCMs allows for better represen-
tation of regional phenomena (Christensen et al., 2007). The
land surface of the GCM does not help drive that of the
RCM. Each RCM has its own land-surface scheme that

Fig. 1 Topography, location, and representation of Churchill River basin (thick black line; coastline is represented by thin black lines). Elevation scale is in metres.
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interacts with the lower levels of the RCM atmospheric simu-
lation. Each GCM is driven by the Intergovernmental Panel on
Climate Change (IPCC) Special Report on Emissions Scen-
arios (SRES) A2 scenario, which is at the higher end of the
IPCC emissions scenario spectrum (IPCC, 2000).The ensem-
ble approach of NARCCAP allows the representation of
uncertainties introduced by GCM choice, RCM choice, and
their respective structural formulations (Maraun et al., 2010).
The time frames covered are 1968 to 2000 for the base refer-
ence period and 2038 to 2070 for the future period, including
three years of model spin-up data at the beginning of each run,
which are not included in this analysis.
Because of budget constraints not all of NARCCAP’s poss-

ible RCM–GCM combinations are being run. Each GCM will
be coupled with half the RCMs and vice versa, resulting in a
representative sample of twelve simulations. Although the
various ensemble members each have a 50 km horizontal res-
olution, they employ a variety of map projections, vertical
coordinate systems, dynamics and physics schemes, land-
surface schemes, vegetation classes, and time steps among
other varying parameters and characteristics. Output from
the various ensemble members is released incrementally in
conjunction with the completion of post-processing and only
those combinations published at the time of analysis are
included in this work (Table 1). The simulations cover a
base period, 1971–2000, and a future period, 2041–2070.
The GCMs used in this study include the Community
Climate System Model (CCSM; Collins et al., 2006), the
Third Generation Coupled Global Climate Model (CGCM3;
Flato, 2005; Scinocca & McFarlane, 2004), and the Geophy-
sical Fluid Dynamics Laboratory (GFDL) model (GFDL,
2004), while RCMs include the Canadian Regional Climate
Model (CRCM; Caya & Laprise, 1999), the Hadley Regional
Climate Model (HRM3; Jones et al., 2004), the Regional
Climate Model, version 3 (RCM3; Giorgi, Marinucci, &
Bates, 1993; Giorgi, Marinucci, Bates, & De Canio, 1993;
Pal, Small, & Eltahir, 2000; Pal et al., 2007), and Weather
Research and Forecasting Grell (WRFG; Skamarock et al.,
2005) model. The models are discussed in detail in Roberts
and Snelgrove (2015) and on the NARCCAP website (http://
www.narccap.ucar.edu/).

3 Methodology

This study uses a three-pronged approach that incorporates a
broad range of simulated hydrological data from an

ensemble of RCMs and GCMs. This includes analysis of
(i) the atmospheric moisture convergence, (ii) the balance
between precipitation and evaporation, and (iii) the instan-
taneous runoff, herein referred to as the upstream, mid-
stream, and downstream approaches, respectively (note that
these are analysis approaches and not part of a physical
river). The upstream approach examines upper air climatic
variables (wind and specific humidity levels) that are pri-
marily driven by model dynamics and minimally influenced
by parameterization (Serreze et al., 2002). The midstream
approach uses precipitation and evaporation, which occur
at the land surface and are strongly influenced by various
parameterization schemes. The downstream approach
analyzes the RCM’s simulated runoff, which is the end
result of the land-surface scheme and a multitude of
parameterizations.

Each of the analysis streams can be used as an approxi-
mation of mean annual runoff (discussed below) effectively
providing three runoff approximations per RCM–GCM. By
incorporating hydrological components in these various
stages of simulation (i.e., a fullstream approach), it is possible
to capture a range of intra-model uncertainty and provide a
more inclusive projection for the amount of runoff in the
Churchill River basin. Note that uncertainty about the ampli-
tude of future greenhouse gas concentrations is not included
in this study because NARCCAP models are driven by a
single greenhouse gas scenario.

a Water Balance Equations
The fullstream approach used here is based on atmospheric
and terrestrial water balances, Eqs (1) and (2), respectively,
which can be found in Rasmusson (1968) and Peixoto and
Oort (1992).

− ∂W

∂t
− ∇H

Q

Q = P− E (1)

P− E = r + ∂s

∂t
(2)

Here, W is the precipitable water content of the
atmosphere; −∇H

Q

Q, is the vertically integrated horizontal
atmospheric moisture convergence; P is precipitation; E is
evaporation, r is runoff; t is time; and s is land-surface water
storage (including soil moisture and snowpack).

The terrestrial water storage component in Eq. (2) tends to
zero over long periods of time (as ∂t gets very large), implying
that mean annual runoff can be represented by P − E.
Subsequently, mean runoff can also be represented by the
atmospheric moisture convergence from Eq. (1), because the
precipitable water tendency is also negligible over long
periods. As such, RCMs are able to provide three represen-
tations of mean annual runoff for analysis, corresponding to
the respective components of the fullstream approach:
(i) −∇H

Q

Q, (ii) P − E, and (iii) r.
More details on the calculation of the components of Eqs (1)

and (2) can be found in Roberts and Snelgrove (2015).

TABLE 1. The RCM–GCM combinations used in this study are denoted by X.

RCM

GCM

CCSM CGCM3 GFDL

CRCM X X —

HRM3 — — X
RCM3 — X X
WRFG X X —
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b Variance Decomposition and Imputation
There are several interpretations of the meaning of uncertainty
in climate simulations. For the purposes of this work, uncer-
tainty is treated as the variability of the climate change
signal in ensemble results. The approach used in this work
follows Déqué et al. (2007), Ferro (2004), and von Storch
and Zwiers (1999) and can be used to isolate and compare
magnitudes of each source of uncertainty. Variance decompo-
sition is used to take full advantage of DOE for individual stat-
istics while data imputation (the process of replacing missing
data with substituted values) reduces the bias in the overall
estimation of uncertainty due to overrepresentation by a
given GCM or RCM.
The average climate response of the change in the modelled

representation of runoff over the entire Churchill River basin
can be denoted by Xijk; where i varies from 1 to 4 according
to RCM (R), j varies from 1 to 3 according to GCM (G),
and k varies from 1 to 3 according to analysis stream (S).
The variance of X can be split into orthogonal positive contri-
butions, as in Eq. (3), where a dot (•) represents the mean of
the index it has replaced.

V(X) = R+ G+ S+ RG+ RS+ GS+ RGS, (3)
where

R = 1
4

∑4

i=1

(Xi†† − X†††)2

RG = 1
12

∑4

i=1

∑3

j=1

(Xij† − Xi†† − X†j† + X†††)2

RGS= 1
36

∑4

i=1

∑3

j=1

∑3

k=1

(Xijk − Xij† −Xi†k −X†jk +Xi†† + X†j† +X††k −X†††)2.

To obtain the total amount of variance contributed by
RCMs, for example, the components of variance in X above
which contain R need to be summed: V(R) = R + RG + RS +
RGS. This way the magnitude of varying RCMs, GCMs,
and analysis streams can be determined with respect to
climate response uncertainty.
To analyze the complete matrix of RCM, GCM, and analy-

sis stream combinations in an unbiased manner, data imputa-
tion is required. This is performed by minimizing the influence
of interaction terms from Eq. (3) (e.g., RG, RGS), per Déqué
et al. (2007).
The first step in the iterative process is to calculate the full

average (X•••) and the double averages (Xi••, X•j•, and X••k) with
available data, as defined above. This is relatively straightfor-
ward because there are several values for each RCM, GCM,
and analysis stream meaning that an average of available
values is taken.
Next, the simple averages must be calculated (Xij•, Xi•k, and

X•jk). Some of these averages cannot be calculated directly

because of missing data (e.g., for Xij•, where i = CRCM and
j = GFDL, no data are available for any of the three analysis
streams), so the principle of minimizing interaction terms is
used. For example, to minimize the RG interaction term
from Eq. (3) one can set Xij• = Xi•• + X•j• − X••• when Xij• is
missing.

The RGS interaction term from Eq. (3) can be minimized
because first estimates are available for all variables except
certain Xijk. The missing Xijk are calculated by setting Xijk =
Xij• + Xi•k + X•jk − Xi•• − X•j• − X••k + X•••, similar to above.

Now that there are initial estimates for all Xijk the process
above of calculating full, double, and simple averages and
minimizing two-term and three-term interaction terms can be
repeated. This iteration continues until the incremental
change of missing Xijk is less than 0.01%.

4 Results
a Base Period Simulation
Results from the base period (1971–2000) simulation of the
ensemble members can be found in Table 2. The simulated
runoff values bookend the Churchill River’s observed mean
streamflow of roughly 1825 m3 s−1 (1.7 mm d−1) (Water
Survey of Canada, 2010) for the time period in question
though no analysis preference is given to ensemble members
that most accurately represent reality. Even though the
results of this work were not processed by a routing model,
they are presented in cubic metres per second because stream-
flow (for which runoff can be used as an approximation) is
often reported in cubic metres per second and hydropower
operators find this useful for water management decisions.
Precipitation, evaporation, and runoff variables from
NARCCAP were published in units of kilograms per metre
squared per second, which were then converted to cubic
metres per second by multiplying by the area of the basin
(9.25 × 1010 m2) and by one cubic metre per 1000 kg water.
The calculation of atmospheric moisture convergence is
more involved and is covered by Roberts and Snelgrove
(2015). For the Churchill River basin 1070.6 m3 s−1 is equiv-
alent to 1.00 mm d−1.

TABLE 2. Base period (1971–2000) annual runoff (m3 s−1) for each
ensemble member and analysis stream.

RCM Stream

GCM

CCSM CGCM3 GFDL

CRCM up 1482 1510 —

mid 1593 1586 —

down 1610 1606 —

HRM3 up — — 1748
mid — — 1665
down — — 1697

RCM3 up — 3899 3732
mid — 2030 2092
down — 1631 1688

WRFG up 1114 1474 —

mid 1084 1152 —

down 1119 1218 —

Uncertainty in Regional Climate Model Mean Runoff Projections under Climate Change / 5
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According to Eqs (1) and (2), one intuitively expects that
each of the three analysis streams would produce identical
(or at least very similar) approximations of runoff. Roberts
and Snelgrove (2015) examined the water balance com-
ponents in detail and found that there were three primary con-
tributing factors to the discrepancies found in Table 2. The
proximity of the study basin to the lateral outflow boundaries
of the RCMs’ domains may have led physical inconsistencies
in the buffer zones to propagate back into the main grid space
(Lucarini, Danihlik, Kriegerova, & Speranza, 2007).
Additionally, NARCCAP’s three-dimensional atmospheric
data were published on 28 pressure levels common to all
ensemble members. Modelling groups had to interpolate
model output from their original vertical coordinates to these
pressure levels. Subsequently, vertical integration using
these pressure level data was used to calculate the atmospheric
moisture convergence. This process is known to introduce
some mass imbalance. The third factor was the introduction
of mass imbalance by the various RCMs’ parameterization
schemes and model processes. See Roberts and Snelgrove
(2015) for more details.

b Imputation
Absolute and relative changes in runoff between the base
period (1971–2000) and the future period (2041–2070) are
presented in Table 3. Absolute changes are used to illustrate
the climate signal in raw data output and highlight the
results from individual RCM–GCM-stream ensemble
members. That being said, ensemble members that have
higher than average approximations for simulated runoff
during the base period also have higher than average projected
runoff changes, likewise for members with lower than average
values. This implies that this “overestimation” (or “underesti-
mation”) is systemic and also manifests itself in the climate
change signal. Because the climate models are prone to sys-
temic biases and no bias correction is taking place, changes
relative to the base period are investigated and discussed
throughout.

To determine whether the imputation procedure produced
reasonable results, a check was completed using the RCM3–
CGCM3 ensemble member. Each of the three analysis
streams was removed, one at a time, from the dataset and
then reconstructed using the remaining data (i.e., RCM3–
CGCM3-upstream was removed then reconstructed using
the imputation method discussed earlier and also for RCM3–
CGCM3-midstream and RCM3–CGCM3-downstream).
Root mean square differences (RMSDs) between actual and
reconstructed values were calculated and compared with
RMSDs from other RCM3 and CGCM3 ensemble members
as well as the two remaining streams. As shown in Table 4,
the RMSD from the actual values is lowest for the recon-
structed RCM3–CGCM3 values, indicating that the imputa-
tion method is satisfactory.

The probability density functions (PDFs) in Fig. 2 assume
that individual results from Table 3 have an equal likelihood
of occurrence. (This does not imply that there is no added
value in modelling beyond the upstream atmospheric moisture
convergence in RCMs; it simply gives equal weight to the
various non-storage water balance components and makes
for the straightforward creation of PDFs. The added value of
modelling midstream and downstream components becomes
apparent in studies focusing on shorter time frames and tem-
poral variability.) The PDFs were created using a smoothed
empirical distribution with Gaussian kernel density estimation.
The probability that mean runoff will change by a given value
or percentage is represented by the area under the curve to the
left of said value. This means that there is an equal probability
that runoff changes could be above or below the projected
ensemble median value.

PDFs are useful in risk analysis and economic decision
making. They recognize that climate projections are not
perfect and provide a spectrum of potential outcomes. To
take full advantage of climate projections in PDF form the
costs and risks of an erroneously high runoff projection
must be compared with those of a low runoff projection. For
example, if potential climate change impacts for the site of a
future dam and hydroelectric development were being

TABLE 3. Projected runoff changes (between 1971–2000 and 2041–2070), including results of imputation (in bold).

Absolute Change (m3 s−1) Relative Change (%)

RCM Stream

GCM

RCM Stream

GCM

CCSM CGCM3 GFDL CCSM CGCM3 GFDL

CRCM Up 83 219 271 CRCM Up 5.6 14.5 7.2
Mid 146 178 147 Mid 9.2 11.2 8.0
Down 110 179 113 Down 6.8 11.1 6.3

HRM3 Up 18 5 121 HRM3 Up 12.2 4.5 6.9
Mid 95 152 97 Mid 6.0 7.3 5.8
Down 131 196 121 Down 7.9 9.0 7.2

RCM3 Up 533 456 695 RCM3 Up 21.8 11.7 18.6
Mid 121 114 182 Mid 6.7 5.6 8.7
Down 99 100 149 Down 7.4 6.1 8.8

WRFG Up 357 180 388 WRFG Up 32.1 12.2 19.3
Mid 159 227 178 Mid 14.7 19.7 15.0
Down 174 218 165 Down 15.5 17.9 14.0
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investigated, then a runoff projection that is too low may
increase the risk of wasting water over a spillway. An erro-
neously high runoff projection on the other hand may lead
to an increase in construction costs (because a higher capacity
would be required) without the benefit of increased power
generation. The costs and risks of each scenario must be
balanced to determine the “best” projection to use for
project design, which is not necessarily the annual mean or
median.
The simulations indicate that annual basin runoff is

expected to increase. The ensemble median increase is
roughly 156 m3 s−1 (0.14 mm d−1), or 9%, while the mean
increase is roughly 191 m3 s−1 (0.18 mm d−1), or 11%. There
are some outliers on the far right of the PDF that suggest that
runoff increases may be as high as 700 m3 s−1 (0.65 mm d−1),
or 35%, but the increase most likely lies between 25 and
250 m3 s−1 (0.02 and 0.23 mm d−1), or between 1 and 25%.

c Variance Decomposition
Variance decomposition was performed on the full set of data,
including imputed values, the results of which can be found in
Table 5. Of the three primary factors, RCM (R) had the highest
values for both absolute and relative changes, followed by
analysis stream (S). The GCM primary factor (G) appears to
contribute very little to variance, though its influence increases

once the interaction terms (RG, GS, and RGS) are taken into
account. The RS interaction term was dominant for absolute
changes, which contributed to the relatively large total var-
iance attributed to the analysis streams (Total S = S + RS +
GS + RGS). The total variances do not add up to 100%
because of the interaction terms. The RG term, for example,
which is the interaction between the RCM choice and GCM
choice contributes to both the total variance explained by
RCM choice and the total variance explained by GCM choice.

A subset of the data consisting of two RCMs (CRCM and
WRFG), two GCMs (CCSM and CGCM3), and all three
streams that contain no holes also exists in the data matrix,
negating the need for imputation. Variance decomposition
was performed on this subset (also available in Table 5) as
further confirmation of the validity of the data reconstruction
method as well as a quick sensitivity test of the impact of chan-
ging the number of RCM–GCM ensemble members. Results
are similar to those for the full dataset with RCMs contributing
the most to variance, though in the data subset GCMs have a
much larger role than they do in the full dataset.

Figure 3 presents the data from Table 2 as boxplots to
reinforce the results of the variance decomposition in
Table 5. It is also possible to visualize the amount of uncer-
tainty introduced by each RCM, GCM, and analysis stream.
It is apparent that different RCMs contribute a range of

TABLE 4. Differences between reconstructed RCM3–CGCM3 data and comparable categories.

Category Actual Value RCM3-GFDL CRCM-CGCM3 WRFG-CGCM3 Upstream Midstream Downstream

Absolute Changes (m3 s−1) Upstream 42 196 279 318 — 384 398
Midstream 17 50 45 95 323 — 18
Downstream 4 53 83 122 360 18 —

RMSD 46 209 294 354 484 384 399
Relative Changes (%)a Upstream 0.3 7.2 3.1 0.8 — 5.8 5.3

Midstream 2.8 0.3 2.8 11.3 3.3 — 2.3
Downstream 1.2 1.5 3.8 10.6 4.4 1.7 —

RMSD 3.1 7.4 5.6 15.5 5.5 6.0 5.8

aPercentages under Relative Changes refer to relative changes in Stream values and not differences between reconstructed values.

Fig. 2 PDFs of absolute (left panel) and relative changes (right panel) in runoff, including imputed data.
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TABLE 5. Variance decomposition results as a percentage of variance explained.

Data Change R G S RG RS GS RGS Total R Total G Total S

Full Dataset Absolute 22 2 20 3 44 7 3 71 15 73
Relative 47 1 11 9 11 9 11 79 31 42

Data Subset Absolute 20 4 5 11 10 10 40 81 65 65
Relative 28 0 3 8 14 12 36 85 55 64

Fig. 3 Boxplots of absolute (left panels) and relative (right panels) changes in runoff including imputed data, grouped according to RCM (top row), GCM (middle
row), and analysis stream (bottom row). White boxplots include the full dataset for comparison.
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projections, increasing the overall ensemble uncertainty.
RCM3 contributes the most uncertainty when considering
absolute change due primarily to its anomalously high
upstream projections. This corresponds well with the results
for choice of analysis stream, where the upstream analysis
contributes the most uncertainty for both absolute and relative
changes. Midstream and downstream projections are relatively
similar, though the midstream projection does introduce
slightly more uncertainty. The GCM choice also contributes
to uncertainty, though which GCM contributes the most is
not immediately clear upon inspection.

5 Discussion
a Climate Change Signal
The climate change impacts found here (by comparing 1971–
2000 with 2041–2070) for the Churchill River basin
corroborate those found in other studies. The IPCC used a
multi-model ensemble (Bates, Kundzewicz, Wu, & Palutikof,
2008) based on the SRES A1B emissions scenario (IPCC,
2000). The results from this coarse-resolution study indicate
that Labrador can expect between a 10% and 20% increase
in mean annual runoff between 1980–1999 and 2080–2099.
Frigon et al. (2010) used a five-member ensemble of various
CRCM–CGCM3 configurations to show that the Churchill
River, upstream of the existing Churchill Falls hydroelectric
facility, can expect a change in runoff of 21 ± 6% (where
6% is the maximum deviation from the median ensemble
value) from the recent past (1961–1990) to the future
(2041–2070). Frigon et al. (2010) also showed that the ensem-
ble spread of basin runoff related to natural variability is typi-
cally around ±10%. Roberts et al. (2012) used bias-corrected
precipitation and temperature from an ensemble of six
NARCCAP models to drive a hydrological model in a sub-
basin of the Churchill River. Their results indicate a roughly
9% increase in mean streamflow.

b Uncertainty
It is apparent from the variance decomposition of the full set of
data that RCM (R) choice plays a major role in contributing to
uncertainty whether investigating absolute or relative changes
(71% and 79%, respectively). Analysis stream (S) choice
(analysis stream refers to a method of runoff approximation
and not a physical stream) also has a strong influence on varia-
bility in the climate change signal, with a contribution compar-
able to RCM choice for absolute changes (73%) and
approximately half the RCM contribution for relative
changes. GCM (G) choice has the smallest, though non-negli-
gible, role in contributing to uncertainty.
Each RCM, GCM, and analysis stream contributed to the

overall uncertainty of the ensemble (Fig. 3) though some intro-
duced larger amounts of projection variability than others, as
discussed in Section 4c. Several outliers contributed to the
absolute change uncertainty, primarily from the RCM3-
upstream projections (533, 456, and 695 m3 s−1). The only

outlier for relative changes was WRFG–CCSM-upstream
(32.1%). For relative changes, the RCMs had moderate
overlap in their projections and each contributed a comparable
amount to overall ensemble uncertainty. HRM3 contributed
the least, which may be a result of it having only one GCM
pairing to contribute to the imputation process, giving it
extra influence on the imputed HRM3 data. No GCM stood
out as contributing more to uncertainty than the others
because there was extensive overlap between the GCM projec-
tions for both absolute and relative changes.

The upstream projection contributed the most uncertainty of
any analysis stream (projections ranged from 5 to 695 m3 s−1

and 4.5 to 32.1%). In part, this was because the atmospheric
data required for the analysis are more sensitive to two of
the major contributors to imbalance (Section 4a and Roberts
& Snelgrove, 2015) than the data required for the other
streams. In particular, it was sensitive to the conversion to,
and subsequent calculation in, NARCCAP’s common pressure
level vertical coordinates and the proximity to the lateral buffer
zone at the outflow edge of the RCM domains. These factors
would have affected each RCM differently (causing a wider
spread of projections) because they each have unique native
vertical coordinate systems and approaches to dealing with
buffer zones. The midstream projection (95 to 227 m3 s−1

and 5.6% to 19.7%) introduced slightly more uncertainty
than the downstream projection (99 to 218 m3 s−1 and 6.1%
to 17.9%), which likely resulted from the different parameter-
izations and model processes involved in each RCM.

The results from the data subset (Table 5) corroborate the
above results that RCM choice plays the dominant role in con-
tributing to uncertainty. The GCM choice plays a more influ-
ential role in the subset analysis, nearly doubling for relative
changes (to 55%) and increasing by a factor of four for absol-
ute changes (to 65%). The impact of the primary factor G dif-
fered only minimally from the full dataset, so the contributions
must come from the interaction terms. In fact the contribution
of the three-factor interaction term RGS was the highest of any
terms for both absolute and relative changes (40% and 36%,
respectively) in the subset. This increased the total contri-
butions for RCM, GCM, and analysis stream, explaining
why their relative ranks were not substantially altered (aside
from the equal contributions of GCM and analysis stream
for absolute changes). Stream choice contributes comparably
to uncertainty in the full dataset and subset, with a slight
decrease for absolute changes (from 73% to 65%) and a
50% increase for relative changes (from 42% to 64%).
When considering relative changes, “Total S” contributes
roughly 10% more than “Total G” for both datasets.

Overall, the most substantial differences between the full
dataset and the subset occur for absolute changes, whereas
total contributions to uncertainty for relative changes, which
are of primary interest, remained fairly consistent. This
implies that neither the data imputation nor the modification
of the ensemble size had a drastic effect on the relative contri-
butions to uncertainty, providing additional confidence in the
results.
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It is important to note that there are several potentially
influential sources of uncertainty that were not included in
this study, including greenhouse gas emissions scenario,
downscaling method, and hydrological model selection. In
particular, it is impossible to fully cover GCM uncertainty
with the small ensemble examined here. Although the
need for statistical downscaling is generally eliminated, a
limited GCM sample size is one of the major drawbacks
of using the dynamic downscaling approach with an ensem-
ble of computationally expensive RCMs. It was attempted in
this study to expand the number of runs for the three GCMs
by means of data imputation; however, as stated earlier,
these are only estimates and would not result in projections
identical to actual RCM–GCM runs. This means it is not a
comprehensive overview of climate change projection
uncertainty and should be interpreted with caution
(Bennett et al., 2012; Chen, Brissette, & Leconte, 2011;
Mitchell & Hulme, 1999; Poulin, Brissette, Leconte,
Arsenault, & Malo, 2011).
There are many potential sources that could influence each

contribution to uncertainty, but without a much larger dataset
it is difficult to pinpoint exact causes. Nevertheless, likely
reasons are discussed below.
Uncertainty from GCM choice can be attributed to model

structure, formulations, and climate sensitivity. These factors
would influence broad temperature features that, in turn,
play a role in evaporation and precipitation. At a basin scale,
the RCM would play the dominant role in determining exact
values and patterns. In addition to the driving GCM data,
differences in RCM vertical coordinate and resolution choice
may contribute to variability in upstream runoff projections.
Parameterization schemes for precipitation and evaporation
contribute to differences in midstream runoff projections,
though the parameterization inputs vary between ensemble
members and also play a large role. Each RCM has a different
land-surface scheme, which contributes to variability in down-
stream runoff projections. Again, inputs to these schemes vary
between members.
While the imputation method used minimizes the contri-

butions of interaction terms, the results of Table 5 indicate
that interaction is non-negligible when investigating relative
contributions to uncertainty. The interaction effect RS makes
an unusually high contribution to variance in absolute
change of the full dataset because the upstream (atmospheric
moisture convergence) output of RCM3 was approximately
double that of other RCM3 streams and upstream values of
other ensemble members. Correspondingly, the absolute
difference between base and future period simulations was
also noticeably higher. As expected, this effect is less notice-
able while analyzing relative changes, implying that the uncer-
tainty contributions for relative (as opposed to absolute)
changes provide a more robust interpretation of the results.
The three-factor interaction effect of RGS is fairly prominent
in the data subset but is less so once the full dataset is exam-
ined. This effect is likely caused by the imputation method,
which assumes that higher-order interaction terms are

minimal. A larger matrix of data would be beneficial to
further understanding the interaction effects.

c Creating Hydrographs with the Fullstream Method
It is possible to use a modified version of the fullstream
method to examine hydrographs and interannual variability.
By focusing on shorter, sub-annual, time frames it is no
longer possible to assume that the storage tendency terms—
precipitable water content (PRW), snow water equivalent
(SWE) and soil moisture—in Eqs (1) and (2) are negligible.
Two options remain for analysis, as described below and in
Table 6, each with their own advantages and disadvantages.

The first is to look at the annual cycle of how much total
water is in the basin at any given time of year. This means,
for the downstream approach, it would not be possible to
plot a typical hydrograph because changes in soil moisture
and SWE are combined with runoff (i.e., during the spring
melt, SWE is either converted to runoff or additional soil
moisture and would not result in the typical spike for snow-
dominated basins). The midstream approach’s balance of pre-
cipitation and evaporation would remain unchanged because
there are no storage terms, while the upstream approach,
which includes atmospheric moisture convergence and PRW
tendency, would barely change because the tendency term
contributes very little compared with all other water balance
components.

The second option, which would result in more traditional
hydrographs, would be to move the terrestrial water storage
terms to the other side of the water balance equations,
as shown in Table 6. This means that soil moisture and SWE
would be counted in both the upstream and midstream analyses,
resulting in a disproportionate influence on the results.

6 Summary and conclusions

The work presented here provides a useful method for measur-
ing the impacts of climate change on surface runoff in a basin.
Results of mean runoff changes are consistent with a variety of
other studies.

The primary contribution of this study is that it highlights
the value of considering multiple aspects of the simulated
hydrological cycle in order to capture the broadest range of
uncertainty possible, given a set of RCM–GCM output.

TABLE 6. Options for applying the fullstream method to annual
hydrographs.

Option 1 Option 2

Upstream − ∂W

∂t
−∇H

Q

Q − ∂W

∂t
−∇H

Q

Q− ∂s

∂t
Midstream P − E P− E − ∂s

∂t
Downstream r + ∂s

∂t
R

Advantage No disproportionate
influence

Traditional hydrograph

Disadvantage No traditional hydrograph Disproportionate influence of
∂s/∂t
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RCM, GCM, and analysis stream all contribute substantially
to uncertainty in the climate change signals of the mean
basin runoff, with RCM tending to dominate. With regard to
individual RCMs, GCMs, and analysis streams, RCM3 con-
tributed the most to uncertainty of any RCM, while each
GCM contributed a comparable amount, and the upstream
approach contributed more than midstream and downstream
approaches.
These results differ from most uncertainty attribution

studies because runoff, as opposed to temperature or precipi-
tation, is examined here. While runoff ultimately includes all
the factors and inputs that influence mean simulated tempera-
ture and precipitation it also incorporates additional parame-
terizations and inputs such as soil moisture and depth,
vegetation classes, and evaporation. Many, if not all, of
these are strongly dependent on local processes and result in
RCM choice being the greatest overall contributor to uncer-
tainty. Choice of analysis stream also plays a substantial role
because there are different inputs, processes, parameteriza-
tions, and assumptions for each, resulting in a variety of
approximations for simulated runoff.
Also of note are the differences in the contributions to rela-

tive uncertainty between absolute and relative changes in
mean runoff. The primary distinction is the importance of
analysis stream choice, with 73% and 42% of the variance
explained for absolute and relative changes, respectively.
This is caused primarily by the anomalously high atmospheric
moisture convergence of RCM3 and its proportional effect on
the simulated climate change signal. This implies that with

respect to the climate change signal and ensemble member
intercomparison it is more insightful to examine relative
changes in runoff in which RCM, GCM, and stream choice
explain 79%, 31%, and 42% of variance, respectively. All of
which are substantial, and none of which should be ignored.

Future work will include reproducing the analysis on differ-
ent watersheds to explore regional influence as well as exam-
ining the effects of climate change on the annual runoff cycle.
Investigating changes in the annual hydrograph according to
the options presented in Section 5c is also of interest.
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