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ABSTRACT: We examine the robustness of a suite of regional climate models (RCMs) in simulating meteorologi-
cal droughts and associated metrics in present-day climate (1971-2003) over the conterminous United States
(U.S.). The RCMs that are part of North American Regional Climate Change Assessment Program (NARCCAP)
simulations are compared with multiple observations over the climatologically homogeneous regions of the U.S.
The seasonal precipitation, climatology, drought attributes, and trends have been assessed. The reanalysis-based
multi-model median RCM reasonably simulates observed statistical attributes of drought and the regional detail
due to topographic forcing. However, models fail to simulate significant drying trend over the Southwest and
West. Further, reanalysis-based NARCCAP runs underestimate the observed drought frequency overall, with
the exception of the Southwest; whereas they underestimate persistence in the drought-affected areas over the
Southwest and West-North Central regions. However, global climate model-driven NARCCAP ensembles tend to
overestimate regional drought frequencies. Models exhibit considerable uncertainties while reproducing meteoro-
logical drought statistics, as evidenced by a general lack of agreement in the Hurst exponent, which in turn con-
trols drought persistence. Water resources managers need to be aware of the limitations of current climate
models, while regional climate modelers may want to fine-tune their parameters to address impact-relevant met-
rics.
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INTRODUCTION

The impacts of climate change on drought attri-
butes continue to be debated in the scientific commu-
nity, even as multiple regions, globally and in the
United States (U.S.), experience severe droughts.
Drought is a recurrent problem in many parts of the
Conterminous United States (CONUS). Heat waves

and droughts alone caused damage of around
$210.1 billion dollars during 1980-2011 in the U.S.
and ranked second highest after tropical cyclones in
terms of financial losses (Smith and Katz, 2013).
Droughts are difficult to characterize because of com-
plex interdependence among various drought attri-
butes, such as severity (magnitude), duration, spatial
coverage, frequency, and persistence. In a design
context, assumption of complete independence or
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dependence among drought attributes may lead to
over- or underestimation of reservoir sizing (Sal-
vadori and De Michele, 2004; Salvadori et al., 2013).
Similarly, the long-range persistence or the Hurst
phenomena (Hurst, 1951), is one of the fundamental
attributes of drought. An example of Hurst phenom-
ena is the persistent drought condition in the South-
west of the CONUS (Stine, 1994; Woodhouse et al.,
2010). Understanding temporal scaling and long-term
persistence within hydrologic variables is important
for the design of water infrastructures. The uncer-
tainty in the conventional statistical analysis may
considerably increase due to the presence of long-term
persistence in hydrologic time series (Koutsoyiannis
and Montanari, 2007). Not considering persistence in
the time series may lead to underestimation in return
period, resulting in an inappropriate reservoir design
(Douglas et al., 2002).

Precipitation simulations from global climate mod-
els (GCMs) are derived variables and hence less
robust than GCM-simulated state variables (such as
temperature) and often fail to adequately capture
important statistical characteristics, such as persis-
tence (Johnson et al., 2011; Rocheta et al., 2014).
Moreover, in order to make reliable decisions and
ensure regional resilience in response to future cli-
mate change, water resources managers and planners
can use climate projections at fine-scale resolution.
The latest generation (Coupled Modeling Intercom-
parison Project phase 5, or “CMIP5”) GCMs run at a
spatial resolution of 150-300 km and are unable to
resolve fine-scale features, such as clouds and topog-
raphy explicitly. Assessments of environmental
impacts typically require information at higher reso-
lutions, for example, at resolutions of 50 km or
higher. A perspective article (Bonnin, 2013) from the
National Weather Service, the organization which
develops precipitation frequency atlas of the U.S.,
mentions that insights from climate science “do not
discuss frequencies and durations required for civil
infrastructures.” High resolution climate information
is essential in impact assessment in hydrology (such
as for the construction of Intensity-Duration-Fre-
quency curves of precipitation extremes [Aron et al.,
1987; Yarnell, 1935], and Severity-Duration-Frequency
curves for drought [Dalezios et al., 2000; Halwatura
et al., 2014]) and agriculture (simulation of crop yield
models [Olesen et al., 2007; Xiong et al., 2007]). Thus,
to capture fine-scale regional information at stake-
holder- (e.g., water resources managers and planners)
relevant scales, different downscaling, such as statis-
tical (Benestad et al., 2008) or dynamical (Giorgi and
Mearns, 1991) methods have been developed.

Dynamical downscaling is based on regional cli-
mate models (RCMs), where all vertical levels of the
atmosphere, including the surface level are taken

into account and relatively (compared to GCMs) fine-
scale hydrometeorological processes are simulated
(Leung et al., 2004). In addition, due to enhanced res-
olution they are expected to provide added value in
the frequency distribution of local weather anomalies,
such as extreme daily precipitation (Laprise, 2008).
On the other hand, statistical downscaling methods
are based on finding statistical relationships between
a set of predictors and predictands (Wilby et al.,
1998; Jeong et al., 2012). Dynamically downscaled
variables respond in physically consistent ways to
external forcing (e.g., land-surface changes) and are
therefore assumed to be less susceptible to non-statio-
narity (or fundamental changes in regional climate
patterns owing to radiative forcing under global
warming). Statistically downscaled variables are
thought to be primarily a result of synoptic forcing
and carefully selected large-scale climate parameters
(Wilby et al., 2004; Jeong et al., 2013), which might
not guarantee physical consistency under non-statio-
narity (Hayhoe et al., 2008; Torma et al., 2015). For
the Northeast U.S., Hayhoe et al. (2008) reports superior
performance of dynamically downscaled RCMs as
compared to statistically downscaled daily precipita-
tion extremes, especially along the coast. However,
the value added by the RCMs, while not questioned
for hypothesis testing, have been debated for down-
scaling (Racherla et al., 2012; Kerr, 2013). Uncertain-
ties in RCMs can result from parameterizations and
resolutions, initial and lateral boundary conditions of
the driving GCMs, and inter-model variability, all of
which constrains their accuracy (Foley, 2010). RCMs
are computationally demanding, i.e., they need more
computer time to reproduce equivalent dynamical
scenarios as compared to the statistical downscaling.
The issue is further exacerbated by the combina-
torics, since running an exhaustive set of GCM-RCM
combinations is a substantial computational chal-
lenge, while an arbitrary sub-selection underesti-
mates the variability. The suite of dynamically
downscaled climate models that are part of the North
American Regional Climate Change Assessment Pro-
gram (NARCCAP) computes a selected subset of all
possible combinations. A comparative analysis of sta-
tistical vs. dynamically downscaled daily precipitation
suggests both methods exhibit considerable uncer-
tainty to regional climate simulations, especially in
simulating summer precipitation (Schmidli et al.,
2007).

To date, very few studies have attempted to evalu-
ate the credibility of RCMs in the context of meteoro-
logical droughts (e.g., Gao et al., 2012), although
there is considerable prior literature on climate
extremes (Bukovsky, 2012; Di Luca et al., 2012; Mis-
hra et al., 2012; Singh et al., 2013; Wehner, 2013).
Jeong et al. (2014) compared future projected changes
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of meteorological drought duration and severity based
on the Standardized Precipitation Index (SPI) and
Standardized Precipitation Evapotranspiration Index
(SPEI) and showed the role of temperature in future
drought changes. However, comparisons do exist for
observed droughts with NARR (North American
Regional Reanalysis; Mo and Chelliah, 2006; Kar-
nauskas et al., 2008; Weaver et al., 2009; Sheffield
et al., 2012a, b) and the land surface models (LSMs)
(e.g., the Noah model; Chen et al., 1997 and the vari-
able infiltration capacity, VIC; Liang et al., 1994).
NARR is based on reanalysis, which does not offer
information about future climate conditions. The
prior studies have mostly used the Palmer Drought
Severity Index (PDSI) as the drought index, which in
turn is based on water balance calculations. There
have been concerns that the PDSI lacks multi-scale
features and hence may not capture droughts on time
scales less than about 12 months (Dai, 2014), thus
being unsuitable for capturing seasonal droughts. The
LSMs assess long-term hydrological drought involving
soil moisture condition and overlooks seasonality.
Physically distributed hydrological models, such as the
VIC (Andreadis and Lettenmaier, 2006; Sheffield
et al., 2009), are expected to be better at handling sur-
face and subsurface hydrological processes but may
contribute larger uncertainties owing to the inherent
parameterizations involved in the model.

Understanding the ability of climate models to
reproduce regional drought (seasonal to decadal time
scale) patterns and accurately reproduce historical
observations at relevant (higher than GCMs) spatial
scales is crucial for water resources planning. The
NARCCAP is a plausible choice to study meteorologi-
cal drought over the CONUS. NARCCAP offers an
archive of simulated data at a horizontal resolution of
50 km (Mearns et al., 2009, 2012) based on runs of six
RCMs at three hourly time steps and produced in two
phases. Phase I (which runs from 1979-2004 with
usable period 1980-2004 excluding spin-up data)
dynamically downscales retrospective atmospheric
reanalysis and utilizes perfect boundary forcing. Phase
II (runs from 1968-2000 with usable period 1971-2000)
downscales data from free running coupled atmo-
sphere-ocean general circulation models. The prior lit-
erature has not examined the performance of
NARCCAP in simulating observed meteorological
droughts with precipitation as a sole forcing input.

We examine meteorological droughts in present-
day climate (1971-2003) in NARCCAP ensembles.
Studying meteorological droughts is important pri-
marily for two reasons. First, prolonged meteorologi-
cal droughts often act as a catalyst for more
damaging other drought categories, such as agricul-
tural and hydrological droughts (Wilhite et al., 2014).
Second, the ability to reproduce observed meteorologi-

cal drought trends can provide stakeholder confidence
in model skills relevant for impact assessments. The
analysis of present-day climate simulations allows an
identification of systematic model errors, which in
turn helps in developing a better understanding of cli-
mate change signals in projected time periods (Giorgi
et al., 2004). In this study, we examine the ability of
both GCM-driven and NCEP-driven RCM runs to sim-
ulate observed drought attributes. Since reanalysis
effectively encapsulates weather prediction model
analysis fields, it is appropriate to compare the RCM
output with observations on an individual event basis.
In GCM-driven runs, GCM outputs are used to pro-
vide boundary conditions for both historical and future
climate runs. However, for historical runs, model per-
formance cannot be evaluated against individual
events, and comparison with observations is only pos-
sible for statistical attributes independent of time
steps. Hence, in the latter case, only those statistical
properties of droughts, which are temporally indepen-
dent, have been analyzed. We examine meteorological
droughts with most commonly used indices, specifi-
cally, the SPI, which is a measure of water availability
relative to the baseline condition (McKee et al., 1993)
and captures the multi-scale nature of drought.

The present study evaluates following primary
research question for the CONUS:

1. How good are the Phase I and Phase II simula-
tions of the NARCCAP RCMs in providing
credible predictive insights for meteorological
droughts and associated drought statistics?

This in turn leads to a few related ancillary ques-
tions, which directly relate to data and analysis
methodology and how it translates to overall meteoro-
logical drought trends:

1. Do observational datasets obtained from different
sources consistently simulate trends in precipi-
tation, one of the major drivers of meteorological
droughts?

2. How sensitive are the drought metrics and asso-
ciated statistics at different temporal scales?

3. Do RCMs add substantial value in simulating
observed precipitation as compared to “raw” pre-
cipitation directly obtained from GCMs?

Our study adds to existing literature in several
aspects. First, to date very few studies attempted to
evaluate the credibility of RCMs in general and the
NARCCAP in particular in replicating meteorological
droughts and associated attributes, although equiva-
lent analyses have been performed for temperature
(Jeong et al., 2014), precipitation (Wehner, 2013;
Singh et al., 2013), and wind extremes (Pryor et al.,
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2013a, b). Second, while previous work mostly evalu-
ated RCM skills against observations based on
reanalysis-driven RCM experiments or projection of
extremes based on GCM-driven experiments, this
study is one of the first kind that investigates the
credibility of Phase I (NCEP-driven) and Phase II
(GCM-driven) NARCCAP runs in simulating meteoro-
logical drought in the present-day (1971-2003) climate.
Third, we use different quantitative metrics to assess
RCM skills against multiple observational datasets in
simulating wide ranges of both temporally dependent
(such as trends, temporal variability in drought area)
and independent (frequency and persistence) regional
drought statistics, which are not yet investigated in
any of the existing literature. In addition, we evalu-
ate GCM-driven RCMs’ skills with respect to their
host GCMs. This is because in most cases the perfor-
mance of the models is debatable when RCMs are dri-
ven by GCM fields due to the potential low quality of
the forced GCM climatologies. We hope our analysis
will assist the modeling community in recognizing
systematic model errors, which provides an opportu-
nity for further model development and improvement.
Further, the analysis presented herein will be helpful
for the stakeholder community in identifying model
limitations before using these models in Impact,
Adaptation and Vulnerability (IAV) studies.

Here the objectives are to evaluate the credibility
of NARCCAP RCMs to reproduce observed statistical
attributes of meteorological droughts over the
CONUS. Robustness is typically examined at decadal
to multi-decadal timescales based on maximum data
availability of the NARCCAP model runs, specifically,
1980-2003 for NCEP-driven runs, and 1971-1999 for
GCM-driven simulations. A 25-30 years’ timescale is
typically used to determine a climatological average
by climate scientists since it is long enough to filter
out natural variability (e.g., the impact of oceanic
oscillators) in the climate systems. Coincidentally,
the typical planning horizon of water resources plan-
ners and infrastructure managers is usually about
30 years in the future. Thus, insights based on 25-30-
years’ average can help to understand projection
skills, quantify uncertainty, and assess regional
impacts of meteorological droughts.

DATA AND METHODS

Study Region

Our study focuses on the CONUS (20°N-50°N,
125°W-60°W). We consider nine climatologically
homogeneous regions across the CONUS as sug-

gested in the literature (Karl and Koscielny, 1982;
Karl and Koss, 1984). Figure 1 shows climatologi-
cally homogeneous regions and topography map of
the CONUS. Delineation of these regions is per-
formed using principle component analysis of grid-
ded PDSI values. These regional classifications have
been used by many researchers earlier in the con-
text of drought (Soul�e and Yin, 1995; Easterling
et al., 2007).

Observational Data

We used three different precipitation datasets
available at monthly time steps for validation. The
spatial resolutions of the observed datasets are close
to that of NARCCAP simulated models (0.5°). The
use of multiple observations, while not a norm in
model evaluation studies, needs to be considered for
droughts, specifically because this can address the
issue of uncertainty in the observed drought patterns.
As discussed by Trenberth et al. (2014), different
observational datasets may generate considerably
different insights regarding drought trends (e.g., see
the diametrically opposite insights in Dai, 2013 and
Sheffield et al., 2012a, b). Thus, rather than recom-
mending one observational dataset for validation, we
believe a better strategy may be to examine multiple
observational datasets and use agreement about
these datasets as one measure of credibility for any
insight (including diagnosis or prognosis) of droughts.
In other words, we would assess credibility of models
by examining those drought patterns that exhibit
similarity across multiple observations.

The first dataset is produced by the Climate
Research Unit (CRU TS3.22) of the University of
the East Anglia (Harris et al., 2014). This includes
gridded precipitation data over land at 0.5° spatial
resolution for the time period 1901-2013, out of
which we extracted data for the period 1971-2003
for the analysis. Harris et al. (2014) presents a
detailed comparison of CRU precipitation climatol-
ogy against other available observed precipitation
climatologies and found the dataset compares favor-
ably; however, the major deviations are mostly in
regions or time periods with sparser observational
datasets.

The second dataset is from the Global Precipitation
Climatology Center (GPCC) at Deutscher Wetterdienst,
hereafter referred to as GPCC v.6 (Schneider et al.,
2014). This dataset contains global land surface pre-
cipitation based on 67,200 stations worldwide, which
have record durations of 10 years or longer. The data-
set contains monthly precipitation records at a regular
spatial resolution of 0.5°, 1°, and 2.5° with temporal
coverage ranges from 1901 to 2010. For the present
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study, we extracted data for the common period of
1971-2003 at a spatial resolution of 0.5°.

The third dataset is the University of Delaware
v.3.01 (UDel v.3.01; Willmott and Matsuura, 2001).
The dataset is available at a monthly temporal
resolution over global land areas spanning from
1900-2010.

Regional Climate Model Data

We used archive simulated data from six RCMs
driven by NCEP and GCM boundary conditions.
Details of all NARCCAP models considered in this
study are listed in Table 1. All operate at a spatial
resolution of 50 km over landmasses of the 48 con-

tiguous U.S., most of Canada to 60°N, and Northern
Mexico. Simulations with these models are produced
for the current and the mid-21st Century (2041-2070)
under the SRES A2 emissions scenario. The models
differ in structure and parameterization schemes.
Two of the regional models, CRCM and ECP2 include
the “spectral nudging” technique, which imposes
time-variable large-scale atmospheric states in the
integration area of the RCM domain (von Storch
et al., 2000; Wehner, 2013). The remaining regional
models were unconstrained inside the integration
area. To perform comparative analyses, the NARC-
CAP models with three hourly temporal resolutions
are aggregated to a monthly time scale. To avoid
missing data near the end of the simulations and to
maintain consistency throughout the analyses while
trying to include as much data as possible, all NCEP-
driven runs are analyzed during 1980 to 2003, while
GCM-driven RCMs are analyzed for the time frame
of 1971-1999.

In general, as compared to the single model, the
multi-model ensembles increase the overall skill,
reliability, and consistency of the model performance
(Tebaldi and Knutti, 2007) while characterizing
model uncertainty from the ensemble spread (Sander-
son and Knutti, 2012). Hence, apart from individual
model performance, the performance is also evaluated
on multi-model ensemble members (multi-model med-
ian and bounds).

Global Climate Model Data

To understand value added by RCMs, we compare
the performance of NARCCAP ensembles with precip-
itation simulations of the 20th Century (20C3M) sce-
narios from their host (or driving) global coupled
atmospheric ocean general circulation models
(AOGCMs) archived at monthly time steps: CCSM3.0,

150 350 600 1000 12001500 1800 2500

Elevations (m)

42°N

31°N

125°W 114°W 103°W 92°W 81°W 70°W

FIGURE 1. Climatologically Homogeneous Regions in U.S. The abbreviations ENC, NE, NW, SE, SW, and WNC denote East-North Central,
Northeast, Northwest, Southeast, Southwest, and West-North Central regions, respectively (left); topography distribution (right).

TABLE 1. Details of RCM Models Used in This Study.

Model
Acronym

RCM with Institution/Model
Origin and Reference

Boundary
GCM(s)

CRCM Canadian RCM (Caya and
Laprise, 1999)

CCSM, CGCM3

ECP2 Scripps Experimental Climate
Prediction Center Regional
Spectral Model (Juang et
al., 1997)

GFDL

HRM3 Third-generation Hadley Center
RCM (Jones et al., 2003)

HADCM3,
GFDL

MM5I Fifth-generation Pennsylvania
State University — National Center
for Atmospheric Research Mesoscale
Model (Grell et al., 1994) run by
Iowa State University

CCSM

RCM3 Regional Climate Model version
3 (Giorgi et al., 1993a, b), run
by UC Santa Cruz

GFDL, CGCM3

WRFG Weather Research and Forecasting
Model, run by Pacific Northwest
National Laboratory
(Skamarock et al., 2005)

CCSM, CGCM3
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CGCM3.1, and GFDL-CM2.0 and HadCM3. These
AOGCMs are made available by the World Climate
Research Program (WCRP) Coupled Model Intercom-
parison Project Phase 3 (CMIP3; Meehl et al., 2007).
The HadCM3 run for NARCCAP was different from
that in CMIP3 archive, therefore, the outputs of this
GCM simulation were obtained by contacting NARC-
CAP team directly. To maintain simplicity in the
analysis the initial condition biases associated with
the GCM simulations are assumed to be insignificant
and only the first realization was used when multiple
ensemble runs were available for each of the driving
GCMs (Rocheta et al., 2014).

All climate model outputs are interpolated to a
common grid of 0.5° latitude/longitude resolution
using the bilinear interpolation technique in the Cli-
mate Data Operators software (CDO, https://code.
zmaw.de/projects/cdo). To compare with observations,
land/sea mask at 0.5° spatial resolutions are obtained
from the Oak Ridge National Laboratory Distributed
Active Archive Center (ORNL DAAC) and are applied
to GCM and NARCCAP simulated fields.

Meteorological Drought Attributes

Meteorological drought is referred to as a precipi-
tation deficiency, in comparison to normal or baseline
conditions. We use Standardized Precipitation index
(SPI-n, where n = 3-, 6-, 9-, and 12-month accumula-
tion period) as an index of meteorological drought.
SPI represents the number of standard deviations
above or below that an event is from the long-run
mean (Sims et al., 2002). To estimate SPI at an “n-
month” time scale (hence, SPI-n), an accumulation
window of n-months is applied to a given monthly
precipitation time series, following which a statistical
distribution is fitted. In this article, as in the original
work of McKee et al. (1993), we used Gamma distri-
bution to fit precipitation time series aggregated at
n = 6 months (McKee et al., 1993; Sims et al., 2002).
SPI is spatially invariant and probabilistic in nature
and able to capture different drought states ranging
from short-, medium-, and long-term drought condi-
tions depending on the length of the accumulation
period. SPI has a number of advantages (Lloyd-
Hughes and Saunders, 2002), such as: (1) The SPI is
based on precipitation and requires computation of
only two parameters, compared to multiple computa-
tional terms needed to compute PDSI. (2) By avoiding
dependence on soil moisture conditions, it can be
effectively used both in summer and winter seasons
and is not adversely affected by topography. (3) It
can be tailored to specific needs for impact assess-
ment. For example, its variable time scales are useful
for modeling a wide range of meteorological, agricul-

tural, and hydrological applications. The temporal
nature of the index facilitates understanding drought
dynamics, such as onset and cessation, which is diffi-
cult to be tracked by other indices. (4) Standardized
nature ensures that the frequency of extreme events
at any location and on any time scale is consistent.
Conversely, application of SPI has a few potential dis-
advantages: (1) the quantity and reliability of the
data used to fit a suitable probability distribution, (2)
due to its standardized nature, SPI is incapable of
identifying regions that are more “drought prone”
than others, and (3) employing SPI at shorter time
scales (such as 1, 2, and 3 months) to the regions
with low seasonal precipitation, which results in erro-
neous large positive or negative SPI values.

The drought properties are derived using threshold
methods, which are based on statistical theory of
runs (Yevjevich, 1983) for analyzing sequential time
series. A drought event is identified when an uninter-
rupted sequence of SPI values (at monthly time
scales) remains equal to or below the 20th percentile
of the SPI distribution over the period analyzed at a
specific site (Svoboda et al., 2002). We characterize
meteorological drought to the following properties
(McKee et al., 1993):

1. Duration: Number of consecutive months when
SPI remains equal to or below the threshold
value.

2. Severity: Cumulative values of SPI within the
drought duration. In general, for convenience
severity of drought events at a particular time
scale is taken to be positive and expressed as
(McKee et al., 1993)

Si ¼ �
XD

t¼1

SPIi;t i ¼ 1; . . .;n ð1Þ

3. Percentage Area under Drought (PAUD):
The fraction of the area (in percentage) is con-
sidered under drought if the SPI values for the
grid cells reach below the specified threshold
limit in line with the former study (Sheffield
and Wood, 2008). Accordingly, PAUD (At) at a
time step t is computed using the expression

At ¼

PNgrid

i¼1

1 Zi;t �Zthr

� �
:Ai

PNgrid

i¼1

Ai

8t ¼ 1; 2; . . .;n ð2Þ

where 1 wf g is a logical indicator function of set
w, taking the value of either 0 (if w is false) or 1

JAWRA JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION6

GANGULI AND GANGULY

https://code.zmaw.de/projects/cdo
https://code.zmaw.de/projects/cdo


(if w is true), Zi,t is the SPI value of month t,
Zthr is the threshold limit of SPI for identifying
drought in the grid, Ai denotes influence area of
the grid i and is computed by area of the grid
cell i weighted by the cosine of the grid latitude
and Ngrid is the total number of grids in the
region.

4. Persistence: The persistence in hydroclimatic
time series represents temporal grouping of non-
periodic similar events, such as occurrence of
similar conditions such as dry (or wet) spells in a
cluster of time frames (Outcalt et al., 1997; Mesa
et al., 2012; Kumar et al., 2013). Drought persis-
tency is quantified by the Hurst exponent (index,
H). The Hurst index, 0.5 < H < 1 (H = 0.5, the
data is independent, which is expected in a ran-
dom series and due to the absence of long-term
temporal correlation) represents positive persis-
tency in the time series and reinforces the trend.
This implies, if the series is showing a downward
(upward) trend of its long-term average in the
previous period, it is likely to follow the same
trend in the subsequent time period (Kumar
et al., 2013). For many geophysical time series, H
values range between 0.6 and 0.9 (Outcalt et al.,
1997). We use detrended fluctuation analysis
(Peng et al., 1994; Weron, 2002) to compute the
Hurst exponent.

Methodology and Evaluation Metrics

First, we evaluate uncertainty in different observa-
tional datasets during 1971-2003 in simulating precipi-
tation. For this, we compare the first and second
moment properties (mean and standard deviation) and
lag-1 autocorrelation in the datasets. Then we investi-
gate the sensitivity of SPI at different time scales by
comparing following metrics over the land grids: (1)
spatial pattern during notable drought years, and
regional distributions of (2) cross correlation fields, (3)
weighted average drought severity (weighted by the
drought duration), and (4) frequency.

After investigating uncertainty in different obser-
vations and the evolution of meteorological drought
at multiple time scales, we analyzed skills of the
GCM and reanalysis-driven NARCCAP ensembles in
reproducing observed drought statistics. We adopted
three general criteria to assess the robustness of
NARCCAP RCMs to simulate historical drought cli-
matology. The first criterion assesses the value added
by the multi-model (hereafter referred to as MME)
median NARCCAP GCM-RCM ensemble against the
simulation of precipitation fields from the MME
median raw “host” GCM during 29 years (1971-1999)

of the simulation time period. The second criterion
assesses the robustness of the NARCCAP, driven by
NCEP boundary conditions to emulate observed
drought trends (1980-2003). Here we used individual
NARCCAP RCMs and their multi-model ensembles,
MME median and its bounds (MME minimum and
MME maximum). The MME minimum and MME
maximum ensembles of the RCMs are computed at
10th and 90th percentile levels of the model runs.
The third criterion assesses the ability of GCM-driven
RCMs in simulating statistical metrics of temporally
independent observed drought properties over 1971-
1999. Brief descriptions of each of the assessment
methods and metrics used are summarized here.

In the first assessment, we evaluate the added
value of GCM-RCM NARCCAP run against the host
GCM by comparing spatial patterns of climatology
and variability across the CONUS. We also compare
the variability in seasonal precipitation in GCM-
driven NARCCAP RCMs and their host GCMs
against observations. We use these metrics to
assess the impact of climate change; it is necessary
to examine, as a minimum, the ability of the mod-
els to simulate mean and variance reasonably with
respect to the observations. The second assessment
is based on the number of test statistics between
observations and models during the analysis period
(1980-2003):

1. The Taylor diagrams (Taylor, 2001) of regionally
averaged SPI time series to assess pattern error
over the nine regions.

2. Trends in SPI time series using non-parametric
Mann-Kendall trend statistics with correction
for the ties and autocorrelation (Hamed and
Ramachandra Rao, 1998; Reddy and Ganguli,
2013). The slope of the trend is estimated using
Theil-Sen estimator.

3. Pattern correlation analysis of drought climatol-
ogy using non-parametric Spearman’s rank cor-
relation.

4. Spatiotemporal variability of average (median)
percentage area under droughts (PAUD) using
box-plots and spatial autocorrelation plots.

5. Distribution of drought frequency using box
plots.

6. Box plots and scatter plots of observed vs. abso-
lute bias (modulus difference between model
and observations) in median drought severity
depicting associated uncertainty.

In the third assessment that compares baseline
simulations (1971-1999) of GCM-driven NARCCAP
runs relative to observations, only those statistical
metrics of droughts are considered that are time
independent. In this case, we consider two drought
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properties, i.e., frequency and drought persistence.
We analyze the distribution of drought frequency
over nine regions using box plots. The persistence in
SPI time series is computed using Hurst exponent.
Agreement in Hurst exponent between multiple
observations and the RCMs is analyzed using pattern
correlations.

ANALYSIS

Comparison of Precipitation Datasets

Figure 2 depicts the mean annual precipitation,
standard deviation and lag-1 autocorrelation for the
CRU TS3.22, GPCC v.6, and UDel v.3.01 precipita-
tion datasets over the 33-year time period
(1971-2003). We found an overall agreement among
observations in simulating statistical properties and
general spatial patterns of annual precipitation. The
agreement among datasets is the highest in the West-
North Central regions and lowest in the Northeast

region as analyzed by pattern correlation metrics of
annual average precipitation. In addition, pattern
correlation analysis of mean annual precipitation
over different meteorological subdivisions shows the
correlation between GPCC v.6 and UDel v.3.01 data-
sets are higher as compared to the correlation
between GPCC v.6 and CRU TS3.22 dataset. The
pattern correlation of mean precipitation between
GPCC v.6 and UDel v.3.01 datasets ranges from 0.89
(Northeast) to 0.98 (West-North Central), whereas
correlation between GPCC v.6 and CRU TS3.22 data-
sets ranges from 0.76 (Northeast) to 0.96 (West-North
Central). On the other hand, the correlation of
annual precipitation between CRU TS3.22 and UDel
v.3.01 datasets varies between 0.72 (Northeast) and
0.97 (West-North Central). Spatial analysis of annual
average precipitation suggests CRU TS3.22 tends to
overestimate annual precipitation in the West as
compared to the other two datasets (Figure 2; top
panel). CRU TS3.22 dataset shows less than 11% of
grid points with an average precipitation of 300 mm
or less per year in contrast to other two datasets, in
which 13% and more grid points have annual average
precipitation of 300 mm or less. Further, CRU TS3.22

CRU TS3.22 GPCC v6 UDel v3.01

Annual Mean Precipitation (mm/month)

300 450 650 850 100012001600

4020 30 50 60 70 80

Standard deviation (mm/month)

0.20.1 0.15 0.25 0.3 0.35 0.4

Lag-1 Autocorrelation 

FIGURE 2. Spatial Distribution of Observed U.S. Precipitation Climatology (top row), Standard Deviation (middle row),
and Lag-1 Autocorrelation (bottom row) for Different Datasets for the Common Period 1971-2003.
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dataset underestimates the standard deviation for
low values of precipitation, especially over the South-
west as compared to the other two datasets (Figure 2;
bottom panel). The CRU TS3.22 datasets reportedly
have the wet bias with respect to the other datasets
since around 1996 as noted in earlier studies (Fekete
et al., 2004; Trenberth et al., 2014).

Sensitivity in Spatial Patterns of Droughts at
Different Time Scales

In the following analysis, we investigate the sensi-
tivity of SPI at different time scales. Figure 3 shows
spatial distributions of SPI calculated at 3-, 6-, 9-,
and 12-month time scales at the end of July during
three notable drought years between 1971 and 2003.
For instance, at the end of July 1976 a 3-month SPI
uses precipitation total of May, June, and July 1976,
while the 12-month SPI uses the precipitation total
from August 1975 through July 1976. These time
scales reflect the impact of drought on the availability
of different water resources. For example, soil mois-
ture responds to precipitation anomalies on the rela-
tively small time scale, therefore a three-month SPI
can be used to monitor soil moisture conditions in

different stages of plant development. On the other
hand, streamflow, reservoir storage, and groundwater
respond to long-term precipitation anomalies, there-
fore a 12-month SPI reflects hydrological drought
condition.

In general, on a three-month time scale most of
the regions have patches of the dry and wet pattern,
and are characterized by near-normal conditions (i.e.,
�0.8 ≤ PI ≤ 0.8). The Midwestern and coastal Califor-
nia regions during 1976, Midwest and Southeast
regions during 1988, and part of West-North Central,
Southwest, and West regions during 2002 are in mod-
erate to extreme dry conditions. During 1976, on
shorter (three months) and medium (six and nine
months) time scales Midwest region is characterized
by severe drought conditions, whereas on a longer
time scale (12 months) the region is affected by near-
normal to medium drought state. Conversely, on
shorter and medium time scales, Southwest and West
regions are mostly characterized by near-normal to
wet state. However, on a longer time scale, the
regions are in a moderate drought state, indicating
the probability of hydrological droughts with a conse-
quent loss of water resources. A similar trend was
also noted in 1988, in which on a shorter time scale
Midwest region was affected under severe drought

FIGURE 3. Spatial Maps of SPI at Time Scales of 3, 6, 9, and 12 Months in GPCC v.6 Data. Shades of blue from dark to light
on top of the scale show wetter conditions while light green, yellow, orange, red, and dark red on the bottom show drier conditions;

white indicates near-normal condition.
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condition, whereas on longer time scale the region
was characterized by medium to severe dry state with
moderate to severe drought conditions extended
toward West-North Central regions. Further evidence
of moderate drought state is prominent over South
and Southeast using SPI-12. However, at time scales
of six and nine months, Southeast is found to be in
near-normal condition. In 2002, the percentage grid
points in the near normal state at time scales 3-, 6-,
9-, and 12-months are found to be around 54.1%,
53.8%, 48%, and 39.3%, respectively, indicating that
with an increase in accumulation time scales, there is
an increase in spatial extent of dry and wet pattern.
The percentage grid points under extreme drought
state (SPI < �2) are found to be around 10% in SPI-3
and 17% in SPI-12, showing signs of long-term hydro-
logical drought especially over the Southwest, West,
and parts of Southeast regions during 2002. Previous
studies (US Drought Monitor; http://droughtmoni-
tor.unl.edu/) suggest in summer 2002, more than 50%
of the contiguous U.S. was under moderate to severe
drought conditions, whereas the western part of the
country has been in the grip of severe droughts since
late 1999. The three-month SPI may be misleading in
the Southwest and West. Since these regions are
characterized by little rain, the corresponding histori-
cal totals will be small leading to relatively small
deviations on either side of the mean, which could
result in large negative or positive SPIs (WMO,
2012).

Next we examine the sensitivity of drought statis-
tics using distributions of drought properties at dif-
ferent time scales. Figure 4 shows distributions of

the spatial cross-correlation of SPI time series over
the nine regions. In these figures, the interquartile
range of the box-plots shows a measure of spatial
variability across the regions. While point statistics
such as SPI time series, may be described by a map,
spatial properties such as cross-correlation vary
between a pair of grid points, and should be available
for every possible grid location. The cross-correlations
of SPI time series between a pair of grid points are
computed using non-parametric Kendall’s s correla-
tion over the land grids of the CONUS. Figure 4 sug-
gests regional cross-correlations are positively
correlated over most of the grid points. The drought
indices tend to be closer and less uncertain (shown by
5th and 95th percentile whisker plots) at smaller
time scales; however, at a longer time scale the
indices, in general, differed more. We found that the
uncertainty bounds (25th and 75th percentiles) in
spatial cross-correlation grow with the increase in
SPI-time scales over most of the regions. The median
cross-correlation is found to be least in the Southwest
and ranges from 0.29 (SPI-3) to 0.33 (SPI-12) and
highest in the Northwest region and varies between
0.44 (SPI-3) and 0.5 (SPI-12). Figure 5 shows distri-
butions of weighted average severity and number of
droughts. The regional distributions of weighted aver-
age severity (Figure 5, top panel) show the increase
in drought severity with the increase in the time
scales. In both shorter (3 months) and longer
(12 months) time scales Midwest (East-North Cen-
tral) is characterized by the highest median drought
severity (around 16.65). On medium term (six and
nine month time scales), the West-North Central

FIGURE 4. Box Plots of Spatial Cross-Correlation of Kendall’s s Statistics (significant at 5% significance level) of SPI Time Series
between All Pairs of Grid Points at Different Time Scales for the Nine Regions. Distributions in blue, red, magenta,

and black correspond to 3-, 6-, 9-, and 12-month time scales, respectively. Box-and-whisker plots show distribution of SPI
with median (horizontal line), interquartile range (box), and 5th-95th percentiles (whiskers) of the data.
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region is characterized by the highest average
drought severity. At longer time scales, many regions,
including Central, South, Southeast, and West-North
Central show high median drought severity (exceed-
ing 14). On the other hand, regional distributions of
drought frequency (Figure 5, bottom panel) suggest
decrease in the number of droughts with increase in
the time scales. At short-to-medium time scales, the
highest average drought frequency is noted over the
West and ranges between around 21 (at a time scale
of nine month SPI) and 38 (three month SPI)
droughts on an average (per 33-year). At a 12-month
time scale, the median drought frequency is found to
be highest over the Northeast with around 17
droughts on an average (per 33-year) followed by the
West, South, and Southeast with around 16 droughts
on an average (per 33-year). Although at longer time
scale, the Northeast has the highest average drought

frequency, it is characterized by the least median
severity (around 12.5). This implies higher average
drought frequency in Northeast is counterbalanced
by a lesser average severity. Recently, Hayhoe et al.
(2007) reported frequent droughts in the Northeast in
recent years with extended low-flow periods in
summer.

In subsequent analysis, SPI at an accumulation
period of six months is chosen over other time scales
since it reflects seasonal to moderate trends in precip-
itation (WMO, 2012). SPI in this time scale is effec-
tive for the detection of agricultural drought
conditions because it indicates the water content of
vegetation and the soil moisture conditions (Sims
et al., 2002; Ji and Peters, 2003). Moreover, SPI at
shorter time scales (such as at 1 or 3 months) may
give erroneous results at dry regions, while at longer
accumulation periods (such as 9 and 12 months) the

FIGURE 5. Box Plots of Weighted Average Severity (weighted by duration) and Drought Frequency at Different Time Scales
for the Nine Regions. Distributions in blue, red, magenta, and black correspond to 3-, 6-, 9-, and 12-month time scales, respectively.

Box-and-whisker plots are defined in Figure 4.
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uncertainty in drought conditions may increase due
to the limited number of available records.

Robustness of GCM Forced NARCCAP RCMs in
Simulating Regional Precipitation

In this section, a quantitative evaluation of the
RCM skill over GCMs during 1971-1999 is presented.
Figure 6 compares annual average precipitation and
standard deviation of the ensemble median of ten
GCM-RCM pairs (i.e., CRCM-CCSM, MM5I-CCSM,
WRFG-CCSM, CRCM-CGCM3, RCM3-CGCM3,
WRFG-CGCM3, ECP2-GFDL, HRM3-GFDL, RCM3-
GFDL, and HRM3-HadCM3) with the ensemble med-
ian of their four host GCMs (CCSM3.0, CGCM3.1,
GFDL-CM2.0, and HadCM3). In general, GCMs are
able to capture broad features of time-averaged
precipitation pattern reasonably well, however, they
fail to simulate topographically induced features of
precipitation due to inherent coarser horizontal reso-
lutions. On the other hand, precipitation pattern sim-
ulated from RCMs shows a number of topographically
induced fine-scale regional features and their vari-
ability, such as precipitation pattern over the South-
west, West-North Central, and Northwest regions,
respectively, although their simulated intensity may
differ from observations in many regions. In general,
the annual average precipitation map shows a ten-
dency of GCM-driven NARCCAP ensembles to pro-
duce larger precipitation over the Pacific Northwest
and Northeast regions as compared to their host
GCMs. However, they could be able to simulate the

dry zone transition that arises from precipitation
shadowing by the mountain ranges in the Intermoun-
tain region, which is not adequately represented by
their host GCM field (Figure 6).

Next we compare seasonal precipitation fields sim-
ulated by the GCM and the GCM-driven NARCCAP
RCMs against multiple observations over the nine
regions. Figure 7 shows the distribution of seasonal
precipitation in the three observations, multi-model
median GCM and GCM-driven NARCCAP ensembles.
Among observations, a close agreement is noted
between CRU TS3.22 and GPCC v.6 data in simulat-
ing seasonal precipitation. However, UDel v.3.01
underestimates precipitation over the Northwest and
West in all seasons. For the DJF (December-Febru-
ary) season, both climate models (the MME median
of GCM-driven NARCCAP RCMs and the MME med-
ian of their host GCMs), especially NARCCAP overes-
timates winter precipitation variability over the
Northwest and Southwest regions. Both climate mod-
els fail to capture the spatial variability of precipita-
tion over Northeast, Southeast, and South regions.
Over Southeast, the performance of MME median
NARCCAP RCM is found to be superior to the host
GCM. For MAM (March-May), climate models (MME
median host GCM and NARCCAP RCM), overesti-
mate precipitation over the Northeast, Northwest,
Southwest, West, and West-North Central regions
and underestimate in Southeast and South. Taken
together, in both winter and spring seasons, the
spatial variability of NARCCAP RCMs is found to be
higher over the Northwest and Southwest regions
relative to their host GCMs. The winter precipitation

FIGURE 6. Spatial Distribution of Precipitation Climatology and Standard Deviation in Multi-Model Median of Regional Climate Models/
General Circulation Model (RCM/GCM) Combination (right) and Their Host GCMs (left) over the Period 1971-1999. Four GCMs: CCSM3.0,
CGCM3.1, HadCM3, and GFDL-CM2.0 in 20C3M scenario and ten GCM-RCM NARCCAP models: CRCM-CCSM, WRFG-CCSM, MM5I-
CCSM, CRCM-CGCM3, RCM3-CGCM3, WRFG-CGCM3, ECP2-GFDL, HRM3-GFDL, HRM3-HadCM3, and RCM3-GFDL are considered for
the multi-model median computation.
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over the Southwest is produced by large-scale low
pressure frontal systems generated from the upper
level mid-latitude and subtropical jet streams, draw-
ing necessary moisture from the Pacific Ocean (Wood-
house, 1997). Simulation of precipitation may be
sensitive to the model resolution irrespective of the
topographic forcing as shown by Giorgi and Marin-
ucci (1996). In their experiments, the precipitation
amount tended to increase at finer resolutions.
Greater topographic factors at higher resolution fur-
ther strengthen this effect. For JJA (June-August), in
general, both MME median GCM-RCM pair and the
host GCM underestimate seasonal precipitation
trends except in the Northwest and West-North Cen-
tral regions. In the Northwest, MME median RCM
overestimates precipitation variability relative to the
MME median host GCM and the observations. Con-
versely, in the West-North Central region, the MME
median GCM simulates highest median precipitation.
Neither the NARCCAP nor their host GCM could
simulate the signature of the North American

monsoon (NAM) over the Southwest. The inability to
simulate precipitation in the Southwest is primarily
due to the issue with downscaled simulation for the
region (Wang et al., 2009; Dominguez et al., 2012)
due to its complex topographical features. As noted
by Bukovsky et al. (2013), the dry bias in RCMs,
especially over Arizona is potentially due to inability
of RCMs to develop low level onshore flow as well as
Gulf of California low-level jet during monsoon sea-
son, needed for transporting necessary moisture for
precipitation in the region, which causes very low
precipitation amount during JJA months over the
Southwest. Moreover, in their study, they found that
the GFDL model lacked the skill of providing ade-
quate boundary conditions for RCM to simulate sum-
mer precipitation climatology over the Southwest.
These features and regional terrains are not well sim-
ulated by most of the GCMs as shown by earlier stud-
ies (Collier and Zhang, 2007; Lee et al., 2007). For
SON (September-November) season, MME median
GCM largely underestimates seasonal precipitation

FIGURE 7. Seasonal Distributions of Observed (CRU TS3.22, GPCC v.6, and UDel v. 3.01) and Simulated (interpolated GCM and NARC-
CAP) Multi-Model Median Climate Model over the Nine Climatological Homogeneous Regions. Seasons included in the analysis are: DJF
(December-February), MAM (March-May), JJA (June-August), and SON (September-November). Distributions of CRU, GPCC, and UDel data
are shown in blue, red, and green colors, whereas those for GCM and NARCCAP are shown in magenta and black colors, respectively.
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followed by the MME median NARCCAP ensemble
over Central, East-North Central, Northeast, South-
east, and South regions. Over Southwest and West
seasonal precipitation is reasonably well simulated by
the MME median NARCCAP GCM-RCM pair.
Except, JJA in all seasons, variability or the “spread”
of NARCCAP RCM is found to be much higher as
compared to the host GCM and the observations. The
MME median NARCCAP ensembles show modest
skill in simulating winter precipitation over South-
west as compared to its host GCM, however, MAM is
the season when the model overestimates observed
precipitation amount the most while SON is closest
to the observations.

Robustness of NCEP Forced NARCCAP RCMs in
Simulating Regional Drought Statistics

In this section, we illustrate the quantitative eval-
uation of the Phase I NARCCAP runs with NCEP
boundary conditions relative to multiple observa-
tional datasets during the 1980-2003 period. Since
the Phase I simulations directly utilize “perfect”
boundary forcing, therefore it is expected that the
regional atmospheric model results, such as precipita-
tion can be deterministically compared with the
observations. We evaluate the robustness of NCEP-
driven NARCCAP models with those statistical met-
rics that are time-varying. In this category, we
include simultaneous spatial intercomparison
between models and the observations using Taylor
diagrams, trends, simulations of regional drought
properties, and temporal variability in drought area
over the nine regions.

Simulation of SPI Statistics and Regional
Drought Trends. To make a simultaneous inter-
comparison of the spatial pattern between models
and observation at regional levels, we employed Tay-
lor diagrams. Taylor diagrams provide the concise
statistical summary of how well patterns match each
other in terms of their correlation, root-mean-square
difference and the ratio of their variances. Figure 8
shows the Taylor diagrams for individual NCEP-dri-
ven NARCCAP models and their multi-model ensem-
bles for regional median SPI-6 time series. Each
model is compared with respect to GPCC v.6 data
using centered root-mean-square-difference (RMSD),
Pearson’s correlation coefficient and standard devia-
tion (SD). To investigate observational data uncer-
tainty, CRU TS3.22 and UDel v. 3.01 are also
compared to GPCC v.6 and plotted on the same fig-
ure. The observation is shown on the x-axis of the fig-
ure as a reference point. The distance from this
reference point from the origin is proportional to the

standard deviation of the spatial pattern for each
region. Standard deviation contours from the origin
are shown in black. Contours showing the RMS dif-
ferences between the NARCCAP ensembles and the
observation are shown in green. Model results are
then plotted in the azimuthal position based on the
centered RMS difference and correlation with (refer-
ence) observation and shown in blue contours, repre-
senting the spatial correlation between the models
and the observation.

In examining these figures, we note the agreement
between observational datasets is high in most of the
subregions. In general, the agreement between CRU
TS3.22 and the reference observation data (GPCC
v.6) is higher as compared to between UDel v.3.01
and GPCC v.6 data. The spatial agreement between
CRU TS3.22 and GPCC v.6 is highest over the Cen-
tral region with RMSD error of 0.064 and pattern
correlation of 0.9954. However, over the Northwest
and West both CRU TS3.22 and UDel v.3.01 are in
close agreement with each other. The agreement
between UDel v.3.01 and GPCC v.6 is low over the
Northeast and East-North Central regions, which
may be attributed to local differences within regions
across the gridded datasets. Consistent with previous
findings, we find multi-model ensembles perform rela-
tively better as compared to single individual models.
For example, over the Central region, the standard
deviation of MME maximum is close to GPCC v.6
with a centered RMSD of 0.55 and pattern correlation
of 0.68 (statistical significance level at 5% level),
whereas MME median achieves a correlation with
GPCC v.6 of 0.70 with RMSD of 0.60. The pattern
correlation statistics for MME median ranges from
0.27 (Southwest) to 0.58 (West-North Central). On an
individual model basis, the two RCMs that use spec-
tral nudging, the CRCM and the ECP2 perform bet-
ter in all subregions. The spatial pattern correlations
of CRCM vary between 0.35 (Northeast) and 0.66
(West-North Central). All models exhibit the weakest
spatial correlation over the Northeast (ranges
between 0.15 and 0.35) and highest over the West
(ranges between 0.55 and 0.69). Further, except Cen-
tral and East-North Central regions, all models
underestimate the spatial variance over the rest of
the regions. Over the East-North Central, the MME
median and MME minimum overestimate spatial
variance. On the other hand, over the Central region,
all models including their multi-model ensembles
overestimate spatial variance of the SPI field with
the highest deviation noted by the MME median fol-
lowed by the MME minimum and the CRCM. There
is little spread among models in simulating regional
SPI statistics over the West. Among individual mod-
els, HRM3 performs poorly over the Central, East-
North Central, Northeast, West, West-North Central,
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and Southeast regions; likewise RCM3 over the
Northwest and MM5I over the South and Southeast
regions.

Next, we analyze SPI trends simulated by models
against observations during 1980-2003. The ability of
RCMs to reproduce observed drought trends or pat-
terns may be considered a necessary (but not suffi-
cient) condition for these RCMs to credibly simulate
signatures of anthropogenic climate changes under
future emission scenarios. However, anticipated
changes in radiative forcing imply that historical
skills may not necessarily be adequate to infer future
performance. At the very least, the agreement among
multiple model ensembles, or model consensus, needs
to be considered. Furthermore, the inability of RCMs

to reproduce observed drought patterns may not nec-
essarily be the failure of the RCMs exclusively,
rather they may be inherited from GCMs forcing.
Thus, prior literature (Seager et al., 2009; Schier-
meier, 2013; Ault et al., 2014) suggests that GCM
projections may not always be able to simulate histor-
ical mega-drought events, which in turn are related
to large-scale dynamical patterns. Nevertheless, over
this short period of time, the results of trend esti-
mates may be uncertain due to a number of factors
(e.g., large-scale climatic oscillations, intrinsic climate
variability, and anthropogenic changes) as noted by
Bukovsky (2012). This can provide predictive insight
about models’ credibility to simulate regional climate
in the projected time period (Giorgi et al., 2004).

FIGURE 8. Taylor Diagrams of Observed vs. Individual NARCCAP RCMs and Their Multi-Model Ensembles in Simulating Spatial Patterns
of SPI Time Series over the Nine Regions. NCEP runs are driven by NCEP-2 reanalysis and time period for the analysis is 1980-2003.
Averaged spatial variation (rS) is shown by the radial distance from the origin, which is proportional to spatial standard deviation

normalized by observations. The spatial correlation (r) between observation and models are shown in azimuthal direction.
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Moreover, analyzing trends is helpful in identifying
causes and characteristics of the model bias. Figure 9
shows the spatial pattern of slopes (expressed in
mm month�1decade�1) in the observations (CRU
TS3.22, GPCC v.6, and UDel v.3.01), and simulations
from six RCMs (CRCM, ECP2, HRM3, MM5I, RCM3,
and WRFG) along with their multi-model ensembles
(MME minimum, MME median, and MME maxi-
mum) driven by NCEP boundary conditions. The
slope of SPI at each grid point is computed using
nonparametric Theil-Sen estimator. Statistical signifi-
cance of trend is examined using Mann-Kendall test
statistics at 5% significance level. Grid points with
significant trends are marked with asterisks. We
notice from Figure 9 that the two observation data-
sets — CRU TS3.22 and GPCC v.6 — are in close
agreement with each other in simulating SPI trends;
however, the trends in UDel v.3.01 are noisier as
compared to the other two datasets especially over
the Northwest. Further, the UDel v.3.01 dataset
overestimates drying trends in East-North Central
(around 51% grid points show significant drying
against ~23% grid points in CRU TS3.22 and 20.2%
grid points in GPCC v.6) and Central (around 25.6%
grid points show significant drying pattern against
around 10% grid points in CRU TS3.22 and around
7% grid points in GPCC v.6) regions, and shows a
wet trend in part of the Northwest region (around
2% grid points with significant upward/wet pattern

while other two data show overall significant drying
pattern). The disagreement in the pattern of trends
in UDel is mainly due to the differences in the inter-
polation methodology used in the dataset and the
number of station observations used as noted in the
earlier studies (Nickl et al., 2010; Trenberth et al.,
2014).

Both CRU and GPCC datasets show presence of a
significant drying (negative slope of SPI) trend in the
observed SPI time series over most of North America
including West, Northwest, part of Rocky Mountain,
and Midwest regions. Conversely, few regions also
exhibit wet or positive trends, which include the
Northeast, West-North Central, part of the Southeast
(coastal Gulf Coast and interior regions, such as Ala-
bama, Georgia, North and South Carolina) and South
(Northeast of Texas) regions. The two observed data-
sets (CRU and GPCC) show statistically significant
drying and wet trend over around 70-76% and 24-
30% of the domain, respectively. Among models, the
MME median performs best and simulates a 72%
drying and 29% wet trend (significant). However, it
fails to capture a significant drying trend over Rocky
Mountain regions in the Southwest. Among individ-
ual RCMs, as a whole MM5I performs the best and
simulates a 76% drying and 24% wet trend (signifi-
cant) akin to CRU dataset. The other RCMs, the
CRCM and RCM3 exhibit a widespread significant
wet pattern (over around 61% and 74% of the

CRCM ECP2 HRM3

MM5I RCM3 WRFG

MME MaximumMME MedianMME Minimum

GPCC v6.0CRU TS3.22 UDel v3.01

-0.3 -0.2 -0.1 -0.05 0.05 0.1 0.2 0.3

Slope (mm/month/10-year)

FIGURE 9. Spatial Distributions of Slope (mm-month�1-decade�1) of the Trends in SPI Time Series during 1980-2003 from Six
NCEP-Driven NARCCAP RCMs, CRU v. 3.22, GPCC v. 6, and UDel v.3.01 Datasets. The slopes are estimated with the Theil-Sen estimator,
which is robust against outliers. Stippling indicates trends are statistically significant at 5% significance level obtained using non-parametric

Mann-Kendall two sided test. Drought is modeled using SPI at time scale of six months (SPI-6).
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domain, respectively); the HRM3 and WRFG show a
significant drying pattern (over around 87% of the
domain in both models). Most of the models simulate
a drying trend over the Northwest. However, none of
them simulates widespread significant drying trends
over the West and Southwest. While GPCC v.6, CRU
TS3.22, and UDel v.3.01 all indicate a statistically
significant drying over 72-79% of the domain in the
Southwest and 44-46% of the domain in the West,
most of the models cover only 14% (i.e., ECP2) to 39%
(i.e., CRCM) of the domain in the Southwest and
1.4% (i.e., ECP2) to 34% (i.e., multi-model minimum)
of the domain in the West.

Simulation of Regional Drought Proper-
ties. Figure 10 shows the spatial distributions of
maximum drought severity. The spatial maps reveal
wide variations among the models, for instance,
HRM3 and WRFG overestimate drying trends over
the Northeast and Southeast, respectively. Among
multi-model ensembles, MME median performs best
in reproducing a drying trend over the Southwest;

however, overestimates drying over the Central and
East-North Central regions. Moreover, most of the
models fail to simulate maximum drought properties
over the Great Plains and the Rocky Mountain States
satisfactorily. The spatial pattern of maximum
drought duration is similar to those of severity
(hence, not shown here). For quantitative evaluations
of the model skill, we present heat maps of pattern
correlation analysis of maximum drought severity
and duration in Figure 11. GPCC v.6 is chosen over
the other two datasets as a baseline for comparison
because it is not affected by wet bias unlike CRU
TS3.22 and contains relatively smoother trend field
unlike UDel v.3.01. To investigate the relative agree-
ment between different observational data, CRU
TS3.22 and UDel v.3.01 are also compared in the
heat maps. Pattern correlation statistics are analyzed
using non-parametric rank-based Spearman’s correla-
tion (q), which is robust against outliers. As observed
from Figure 11, weak positive correlation (ranges
from 0.2 to 0.4) exist between CRU TS3.22 and GPCC
v.6 data over the Northeast region. The correlations

FIGURE 10. Maps of Maximum Drought Severity in NCEP-Driven NARCCAP Simulations and Observation during 1980-2003.
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between GPCC and the other two datasets are strong
(more than 0.6) over Central, West, South, and West-
North Central regions. In simulating maximum
drought severity, MME median NARCCAP RCM per-
forms best as compared to the individual RCMs.
Among individual models, RCM3 performed best over
the West and showed highest pattern correlation
ranges between 0.6 and 0.8 (Figure 11). Many models
show a modest positive rank correlation (between 0.2
and 0.4) with reference observation (GPCC v.6); for
example, CRCM over the West, Southwest; HRM3
over the South; RCM3 over the Southwest; and
WRFG over the West. In contrast, many of the mod-
els also exhibit negative correlation coefficients, such
as CRCM and MME maximum over the Northwest,
ECP2 over the South and Southeast, and RCM3 and
MME median over the Northeast. None of the models
including their multi-model ensembles satisfactorily
simulates maximum drought severity and duration
over the Central, East-North Central, Northwest, and
West-North Central regions, respectively. In simulat-
ing maximum drought duration, we note a modest
positive correlation (q = 0.2-0.4) between models and
the GPCC in a few regions; such as, CRCM over the
West and Southwest, HRM3 over the South, MM5I
over the Northeast, RCM3 and MME median over
the West and Southwest, MME maximum over the
West, respectively. We also note the presence of nega-
tive correlation between RCM3 and GPCC over the
Southeast, Northwest, and Northeast regions.

In general, no single model stands out as superior
as compared to its peers, hence we employ regional
bias plots to assess model performance over the
regions as a whole. We compute median drought
severity and absolute bias (absolute difference

between observed and modeled drought severity) rela-
tive to GPCC data at individual grid points over the
nine regions. Figure 12 shows the relation between
regional median drought severity and associated bias.
The median drought severity is found to be highest
over the Southeast followed by the Northwest during
the analysis period (1980-2003). The uncertainties in
the median biases over different regions are small
and in the ranges between 0.77 and 1.36; however,
considering individual grid points the model bias is
found to be highest over the Southeast (with highest
magnitude 8.0, a location in North Carolina) and low-
est over the West (with highest magnitude 5.2, a loca-
tion in Nevada). The correlation between observed
(GPCC) regional median severity and the absolute
model bias is found to be positive and statistically
significant at 1% significance level with Kendall’s s
dependence 0.67 (Figure 12; right). This implies with
an increase in severity the model bias grows higher,
which indicates model performance drops in simulat-
ing extreme drought statistics. The relation between
observed vs. modeled median drought severity is
found to be negative; however statistically insignifi-
cant.

Next, we examine the performance of NCEP-driven
RCMs in simulating the observed drought frequency.
Figure 13 shows the distribution of drought fre-
quency in the nine regions. Among observations, the
agreement between GPCC v.6 and CRU TS3.22 data
is high, with the exception of the Northwest region.
Overall, the spread of UDel v3.01 data is high as
compared to the other two datasets except in the
Northwest, South, and West regions. Observational
datasets suggest highest average drought frequency
over the West (no. of droughts per 24 years: 20) and

FIGURE 11. Heat Maps of Regional Pattern Correlation Statistics for Maximum Drought (left) Severity and (right) Duration.
GPCC v.6 is chosen as reference observation.
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lowest over the Southwest (no. of droughts per
24 years: 16). Among the models, the individual
RCMs including MME median NARCCAP underesti-
mate median drought frequency over all regions with
respect to observational datasets, however, they satis-
factorily simulate regional spread. Few regional
exceptions exist. For example, ECP2 in the North-
east, RCM3 in the East- and West-North Central,
MM5I in the Central and Southeast, and WRFG in
the Southeast overestimate average drought fre-
quency. Further, in the Southwest all models includ-
ing their multi-model ensembles overestimate the
observed drought frequency. The overestimation of
drought frequency by the model ensembles concur-
rent with the inability to capture the significant dry-
ing trends in SPI time series in the Southwest
(Figure 9) suggests that RCMs may generate more
frequent meteorological droughts compared to obser-
vations but fail to capture the intensity of the event.
Over the Northwest, the performance of the two mod-
els with spectral nudging, the CRCM and ECP2 is
comparable to that of GPCC in simulating the med-
ian drought frequency; however, extremes are not
adequately simulated by the models as indicated by
the relatively short length of the whiskers as com-
pared to the GPCC datasets.

In the following sections, we evaluate the skills of
NCEP forced NARCCAP models in simulating spatial
extent of drought. Figure 14 shows temporal variabil-
ity of average (median) PAUD for the nine regions.

The maximum PAUD is found to be ~81% during
2002 in the Southwest region, followed by ~68% dur-
ing 1985 in the East-North Central regions, respec-
tively. The mean PAUD time series is reasonably
well simulated by the MME median NARCCAP
ensembles driven by the NCEP boundary condition.
However, a few regional exceptions exist in some of
the years. For example, NARCCAP RCMs overesti-
mate PAUD over the Southern U.S. during 1986 and
underestimate over the Southwest, Northwest, and
West-North Central regions during 2002. In particu-
lar, NCEP-driven RCMs overestimate variability of
PAUD time series over the West in most of the years.
The box plots in Figure 14 show interannual variabil-
ity of the models, which further confirms the discrep-
ancy between observed and model-simulated PAUD
time series.

Next, we evaluate the robustness of RCMs in simu-
lating persistence in the PAUD time series. This
helps to identify the inconsistency between RCMs
and multiple observations in simulating spatial
extent and timings of drought. Persistence in the
hydrologic event results from the presence of memory
in the system, such as prolonged duration of a
drought event. A high frequency of drought often
results from low persistence in the hydrologic system,
which in turn links to low autocorrelation in the
drought time series, both at spatial and temporal
scale levels (Tallaksen and Stahl, 2014). Hence,
we developed an autocorrelation function (ACF;

FIGURE 12. Relation between Observed vs. Absolute Bias (difference between multi-model median drought severity
and observed drought severity) of Median Drought Severity Averaged over Nine Regions in NCEP-Driven NARCCAP Simulations (left);

Scatter Plots of (top right) Regional Bias vs. Observed (bottom right), and Modeled vs. Observed Median Severity.
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Figure 15) for the PAUD time series up to 1 year lags
(i = 1, 2, . . ., 12 months) for each of the nine regions.
The drop in the ACFs at lag-6 is an inherent property
of the data because the SPI time series is computed
at six month accumulation running window. The
ACF plots show a declining autocorrelation pattern
with increasing time lags, but the nature differs
regionally and among multiple datasets. The tempo-
ral variability of annual PAUD time series shows
high-frequency variability characterized by low auto-
correlation (i.e., less persistence) over the West. On
the other hand, we observe relatively low-frequency
variability and consequently high persistence in
drought area over the Southwest and West-North
Central regions, respectively. This implies the likeli-
hood of hydrological droughts in these regions. Our
finding is consistent with the earlier study on the
Southwest drought (Cayan et al., 2010). The early
21st Century drought over the Southwest started
during 2000 with exceptionally warm temperature
and low precipitation (30th percentile or below) over
the interior Pacific Coast, which again spread over

Colorado, Utah, Arizona, and Southern Nevada by
2002, with monthly precipitation percentiles dropped
to 20th percentile or below (Cayan et al., 2010). Fur-
ther, our analysis in the previous few paragraphs
suggests during 1980-2003, Southwest is character-
ized by lowest average drought frequency as com-
pared to the other regions. This implies evidence of
spatially (i.e., drought affected area) and temporally
(i.e., longer duration) persistent hydrological droughts
over the Southwest. Except for the Southwest and
West-North Central regions, the regional ACFs are
well simulated by the RCMs and their multi-model
ensembles.

Robustness of GCM Forced NARCCAP RCMs in
Simulating Regional Drought Statistics

In this section, we evaluate robustness of NARC-
CAP RCMs driven by GCM boundary conditions in
simulating statistical properties of droughts that are
temporally independent, as GCMs do not contain the

FIGURE 13. Box Plots of Drought Frequency in Individual NCEP-Driven NARCCAP Models, Their Multi-Model Ensembles,
and Multiple Observational Datasets (CRU TS3.22, GPCC v.6, and UDel v.3.01).
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FIGURE 14. Time Series of Percentage Area under Drought, PAUD (regional median) in Observation (GPCC v.6)
and Models. The simulation is performed from the set of six NCEP-driven RCMs over the period 1980-2003.

Box plots show distributions of PAUD from individual RCMs.

FIGURE 15. Autocorrelation Function (ACF) of PAUD (up to 12 months lag) in NCEP-Driven Individual NARCCAP Simulations
and Their Multi-Model Ensembles over the Nine Regions During 1980-2003. The two horizontal lines indicate lower

and upper confidence bounds at 5% significance level.
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same sequence of sea surface temperature variability
and associated signals at same temporal phasing as
that in the observations. In this category, we examine
frequency and persistence as the statistical metrics.
The time slice for comparison is from 1971 to 1999,
the span of maximum GCM-forced NARCCAP data
availability.

Simulation of Drought Frequency: 1971-
1999. We identify the meteorological drought epi-
sodes from historical SPI time series and compare the
regional drought frequency in observations and in
GCM-forced NARCCAP RCMs (Figure 16). We calcu-
late the number of drought events and their dura-
tions at each grid and present spatial distribution of
drought frequency for the nine regions. Figure 16
shows discrepancy among the observations in simu-
lating the regional drought frequency. Both CRU
TS3.22 and UDel v.3.01 underestimate drought fre-
quency as compared to the GPCC v.6. The disparity
between GPCC v.6 and CRU TS3.22 datasets is
clearly due to the markedly different (high) precipita-
tion value simulated by CRU TS3.22 dataset (Fig-
ure 2). Further, the discrepancy in UDel v.3.01 data
relative to the other two datasets is attributed to the
differences in interpolation methodologies used in the
dataset as discussed earlier. The average (median)
observed drought frequency is highest over the West
and the Northeast regions, whereas the frequency is
observed over the Southwest. The intercomparison of
individual observational datasets reveals substantial

numerical differences in simulating drought fre-
quency; however, the overall pattern is identical
across all datasets. The MME-median GCM-RCM
pair overestimates observed drought frequency over
most of the regions; however, it underestimates
drought frequency over the Northeast and the South-
east relative to GPCC data (Figure 16). Likewise in
most of the regions, individual NARCCAP members
overestimate the observed drought frequency.

Simulation of Drought Persistence. The per-
sistence in the SPI time series is analyzed using the
Hurst index. Figure 17 compares the distribution of
the Hurst index and the observed median severity in
the three observational datasets. Figure 17 shows
wide variations among the observations in simulating
regional SPI persistence. In general, UDel v.3.01 fol-
lowed by CRU TS3.22 overestimates regional distri-
bution of Hurst index in all regions relative to GPCC
v.6 data. In Northeast and Southwest, UDel v.3.01
overestimates average drought severity, whereas it
underestimates in the West relative to other two
datasets. While comparing the relation between per-
sistence in SPI time series and average drought
severity, we find the Southwest region is character-
ized by the high SPI persistence with high median
severity, indicating evidence of hydrological drought
in this region. In contrast, although the West is char-
acterized by high values of Hurst index in SPI time
series, the average severity is relatively less as com-
pared to the other regions. The persistence in SPI
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FIGURE 16. Box Plots of Drought Frequency in Individual GCM-Driven NARCCAP Models, Their Multi-Model Ensembles,
and Multiple Observational Datasets (CRU TS3.22, GPCC v.6, and UDel v.3.01).
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time series over the Southeast appears to be least
using GPCC v.6 data. Barring few exceptions (such
as, between the years 2005-2007 and 1986-1987), in
general drought persistence in the Southeast is rela-
tively rare as compared to the other regions of the
U.S. as shown previously (Mo and Schemm, 2008a, b;
Ford and Labosier, 2014). Further, average severity
of drought over the Northeast appears to be less
severe and characterized by low values of persistence
in the SPI time series.

We compare individual GCM-driven NARCCAP
models and their multi-model ensembles in simulat-
ing regional SPI persistence with respect to reference
observations using pattern correlation analysis. Fig-
ure 18 shows a heat map of model performance
against GPCC v.6. Pattern correlation analysis sug-
gests multi-model ensembles do not concur well with
the observations in simulating regional Hurst index.
Among individual models, CRCM-CCSM and WRFG-
CGCM3 over the East-North Central, CRCM-
CGCM3, RCM3-CGCM3 and ECP2-GFDL over the
Southeast, and HRM3-GFDL and HRM3-HadCM3
over Northeast show high correlation value (Spear-
man’s q ≥ 0.6). Over West, spatial patterns of many
models in particular CCSM group (CRCM-CCSM,
MM5I-CCSM, and WRFG-CCSM) are not in phase
with observed Hurst index.

DISCUSSIONS

We evaluate robustness of NARCCAP in two
phases: Phase I NARCCAP simulations driven by
NCEP boundary conditions compare individual drought
events and associated properties with observations

while the Phase II simulations forced by GCM bound-
ary conditions test only those statistical metrics of
drought that are temporally independent.

To assess how NCEP-driven NARCCAP RCMs are
able to simulate regional SPI statistics, we compare
the spatial pattern between models and the reference
observation using Taylor diagrams. Consistent with
previous studies (Arritt, 2008; Bukovsky et al., 2013),
our results suggest spatial pattern correlation of mod-
els are high over the West and correlation value
gradually decreases as we move from west to east.
The deterioration of model performance from the west
(inflow boundary) to east (outflow boundary) is due to
the incorporation of large-scale information in the
model solution at lateral boundaries (Arritt, 2008). As
pointed out by Arritt (2008), the deterioration of
model performance with distance from the inflow
boundary has improved to some extent in the models
that include time-variant large-scale atmospheric
states in the model solution, such as inclusion of
spectral nudging. In this context, we find CRCM and
ECP2 the two RCMs that include spectral nudging
perform reasonably well in simulating regional SPI
statistics as compared to the other RCMs. The results
of the regional trend analysis suggest MME median
RCM simulates regional trends satisfactorily relative
to observations; however, it fails to simulate wide-
spread significant drying over the West and South-
west. Most of the RCMs fail to simulate drying trend
over the Southwest, which appears to be a problem
with downscaled simulation for the region (Wang
et al., 2009; Dominguez et al., 2012) due to its com-
plex terrain. The CRCM and RCM3 exhibit excessive
wetness over the eastern domain, whereas WRFG
shows an overall drying. However, the two RCMs,
CRCM and WRFG, are able to reproduce signs of
drying (significant) trend over the Southwest. This is

FIGURE 17. Box Plots of (left) Hurst Exponent of SPI Time Series and (right) Weighted Average Severity
of Drought in GPCC v.6 (black), CRU TS3.22 (blue), and UDel v.3.01 (red) Datasets.
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because these two models are able to develop on-
shore low level monsoon flow over the Southwest
unlike other RCMs as noted in a previous study
(Bukovsky et al., 2013). On the other hand, the exces-
sive wet trend in CRCM over the eastern domain is
due to its greater moisture convergence at the near
surface level (Bukovsky et al., 2013). The overall dry-
ing trend in WRFG is likely the result of weaker oro-
graphic lift simulated by the model leading to
reduced precipitation over the domain (Liang et al.,
2012). In agreement with earlier findings (Bukovsky
et al., 2013; Cruz, 2014), our analysis suggests
ensemble median NARCCAP RCM forced with GCM
boundary conditions fail to simulate signature of
NAM satisfactorily. One hypothesis that may be
examined by future studies is that the smaller precip-
itation variability in NARCCAP RCMs during JJA
and the underestimation of the NAM summer precipi-
tation is related to RCM warm season convection ini-
tiation.

On evaluating maximum drought severity using
pattern correlation analysis, we find wide spatial
variations among the models. The spatial pattern of
maximum observed drought properties (severity and
duration) shows a sharp gradient stretching from the
Southwest towards the East-North Central regions.
In particular, none of the models forced with NCEP
boundary conditions simulates this spatial pattern
satisfactorily. Some of the models overestimate
drought only to a few specific regions. For example,
HRM3 and WRFG overestimate drought severity and

duration over the Southeast and in the portion of the
Northeast and Central regions, respectively. The dis-
crepancy in simulating regional extremes motivates
us to investigate further if the mean behavior of
drought properties is well simulated by the models.
Therefore, we analyze averaged (represented by med-
ian as this measure is robust against outliers) sever-
ity vs. absolute model bias for each region using
scatter plot. A statistically significant positive rela-
tionship exists between severity vs. the model bias.
This implies with larger severity, the model skill
grows worse. Specifically, with larger severity, the
uncertainty in model projections grows higher. The
worst plausible case is even higher because the upper
bound of the uncertainty is larger for extreme
droughts, leading adaptation difficult because of
larger variability.

Observed and NCEP-driven NARCCAP simulated
multi-model ensembles of PAUD time series show
large spatiotemporal variability. NARCCAP models
overestimate PAUD time series in the West in most
of the years, whereas they underestimate in the
Northeast, Southeast, Southwest, and West-North
Central regions in some of the years. Further, to
investigate the behavior of spatial persistence simu-
lated by the NARCCAP RCMs, we analyze ACF plots
of observations and models up to one year time lag.
The ACF plots of observation at different lags show
evidence of high-frequency variability in PAUD time
series over the West and relatively low over the
Southwest and West-North Central regions, respec-

FIGURE 18. Heat Map of Regional Pattern Correlation Statistics for SPI Persistence. GPCC v.6 is chosen as baseline.
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tively. The low-frequency variability in PAUD time
series corresponds to high persistence in the system,
which in turn can be linked to the likelihood of
hydrological droughts in these regions (Southwest
and West-North Central). The reanalysis-based
NARCCAP RCMs fail to simulate high persistence in
the PAUD time series satisfactorily. In a modeling
framework, spatiotemporal continuity of drought not
only depends on the model ability to reproduce mean
precipitation throughout the annual cycle, but also on
the variability of precipitation to maintain precipita-
tion deficit over a sustained period. The lack of agree-
ment among different models in simulating droughts
is due to different parameterizations involved in
modeling framework and persistence in the hydrologi-
cal system is not adequately addressed by the models
(Blenkinsop and Fowler, 2007; Wang et al., 2009;
Tallaksen and Stahl, 2014).

In Phase II assessment, we evaluate robustness of
the GCM-forced NARCCAP ensembles. The assess-
ments include analysis of regional drought frequency
and persistence in the SPI time series. Overall mod-
els overestimate the regional drought frequency. Dis-
crepancy in simulating regional drought properties,
particularly the severe events, is related to the
convective parameterization schemes, which are not
properly resolved at fine-scale RCM grid cells as
shown in many studies (Fowler and Ekstr€om, 2009;
Tripathi and Dominguez, 2013). This in turn can be
linked to the failure of RCMs to simulate persis-
tently low regional precipitation (Blenkinsop and
Fowler, 2007).

The regional trend patterns in observed SPI time
series show statistically significant drying trends,
especially over the West and Southwest, which fur-
ther motivates the analysis of drought persistence.
The persistence in the time series often leads to
underestimation of variance and subsequently overes-
timation of the statistical significance of trends
(Hamed and Ramachandra Rao, 1998; Koutsoyiannis,
2003). Our analysis suggests the MME median GCM-
RCM pair does not concur well with observations in
simulating the regional Hurst index. One plausible
reason for the inability of RCMs to simulate drought
persistence is that climatic oscillations may not
always be well simulated by climate models. This
opens up possibilities for future research in model
improvements, both GCMs and RCMs.

One of the potential caveats of our analysis is the
relatively short record (25-29 years of monthly time
series data) to characterize the space-time nature of
drought persistence. Although a few studies (Wang
et al., 2009; Tallaksen and Stahl, 2014) have
attempted to check performance of LSMs to capture
hydrological droughts over the CONUS and Europe,
they did not consider temporal scaling properties and

focused on the autoregressive nature of the associated
time series. Our study analyzes temporal scaling
behavior of the meteorological drought index and its
spatial coverage in RCM-simulated climate models
and compares them with multiple observations to
check the credibility of the climate models to simulate
temporal and spatial persistence.

CONCLUSIONS

Precise projections of regional drought properties
are essential to mitigate the impact of droughts on
the water supply system (Shiau and Shen, 2001).
Although a limited number of studies (Blenkinsop
and Fowler, 2007; Sheffield et al., 2012a, b) have
attempted to evaluate robustness of high-resolution
climate models in the context of meteorological
droughts, the potential of dynamically downscaled
NARCCAP models is not fully explored yet (Kerr,
2013). The dynamically downscaled climate variables
are assumed to be physically more consistent as
compared to their statistically downscaled counter-
parts (Laprise, 2008). However, the value added by
the RCMs is still uncertain (Racherla et al., 2012;
Kerr, 2013) due to propagation of systematic biases
from coarser resolution global models to regional
models (Giorgi and Mearns, 1991). Therefore, it is
important to know how well these climate models
are able to simulate drought properties consistent
with observations and offer predictive insights into
drought. Hence, to bridge the existing gap in cur-
rent understanding of NARCCAP RCMs in the con-
text of drought, we evaluate the robustness of
NARCCAP RCMs in simulating meteorological
droughts over the CONUS against multiple observa-
tional datasets. We analyze meteorological drought
as it often translates into potentially damaging other
drought categories (Wilhite et al., 2014). Meteorologi-
cal drought is quantified using the SPI (SPI-6) due
to its multi-scalar nature and its ability to capture
seasonality, as opposed to the PDSI and soil mois-
ture-based indices. Our primary and secondary find-
ings are as follows:

Robustness analysis of Phase I NARCCAP simula-
tions (1980-2003) vs. multiple observations yields fol-
lowing set of insights:

1. In general, multi-model median NARCCAP
RCM outperforms individual models in simulat-
ing regional drought statistics, such as median
SPI, associated trends, the maximum drought
properties, and mean PAUD. However, a few
regional exceptions exist, where extremes are
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over/underestimated by the models. For exam-
ple, models fail to simulate widespread drying
trend over the Southwest and the West.

2. Among individual models, the RCMs with spec-
tral nudging techniques, the CRCM and the
ECP2 simulate regional SPI time series satisfac-
torily. Further, we note that the HRM3 and the
RCM3 are in good agreement with observations
to simulate regional maximum drought proper-
ties.

3. A statistically significant positive correlation
between the model bias and the observed
drought severity indicates with larger severity,
the model skill grows worse. This implies with
larger severity, the uncertainty in model projec-
tions grow higher. The worst plausible case is
even higher because the upper bound of uncer-
tainty is larger on the most severe cases that
render adaptation difficult because of larger
variability.

4. Overall, MME median NARCCAP ensembles
underestimate median drought frequency
with the exception of the Southwest. In the
Southwest, all models including their multi-
model ensembles overestimate observed
drought frequency.

5. Over the Southwest, the overestimation of
drought frequency by the model ensembles con-
current with the inability to capture the wide-
spread drying trend suggests RCMs may
generate more frequent meteorological droughts
compared to observations but are unable to cap-
ture the intensity of the events.

6. The regional ACF plots suggest persistent
droughts over the Southwest and West-North
Central is underestimated by the RCMs. In
addition, none of the models simulates wide-
spread drying trend over the Southwest.

Robustness analysis of Phase II NARCCAP RCMs
vs. observations suggests the following insights:

1. Individual NARCCAP RCMs and their multi-
model ensembles overestimate the regional
drought frequency over most of the regions.

2. Multi-model ensembles do not concur well with
observations in simulating the regional Hurst
Index; however, few individual models, for
example, models with CGCM3 as the boundary
conditions perform reasonably well.

Analysis of observational data across multiple
sources, suggests the following insights:

1. Differences exist among three datasets for simu-
lating annual average precipitation: CRU TS

3.22 shows the tendency toward wetter trend
and underestimates variance especially over the
Southwest.

2. Both CRU TS 3.22 and GPCC v.6 are in good
agreement with each other in simulating regio-
nal trends in SPI. In contrast, UDel v.3.01 is
relatively noisier and overestimates the drying
trend over the East-North Central and the Cen-
tral regions.

3. Simulation of the regional drought during 1971-
1999 shows both CRU TS 3.22 and UDel v.3.01
datasets underestimate drought frequency as
compared to the GPCC v.6. On the other hand,
the agreement between CRU TS3.22 and GPCC
v.6 data is found to be high during 1980-2003 in
simulating the regional drought frequency.

4. UDel v.3.01 followed by CRU TS 3.22 overesti-
mates regional distribution of the Hurst Index
as compared to the GPCC v.6 dataset.

5. Analysis of drought persistence in PAUD time
series reveals the Southwest and the West-
North Central regions have higher drought per-
sistence, whereas persistence analysis of the
SPI time series (using Hurst index) shows the
Southeast is characterized by least persistence.

Analysis of SPI sensitivity across multiple time
scales shows the following insights:

1. Distributions of spatial cross-correlations over
different regions show in general, drought
indices tend to be closer and less uncertain at
smaller time scales, whereas spatial variability
increases with the increase in accumulation
time scales. Further median cross-correlation is
least over the Southwest and highest over the
Northwest.

2. Regional distributions of weighted average sever-
ity show an increase in drought severity with the
increase in the accumulation time scales,
whereas opposite trends are noted for the spatial
distribution of drought frequency. The highest
average drought severity is found over the Mid-
west (East-North Central) at 3- and 12-month
time scales, and also in the West-North Central
at 6- and 9-month time scales. At the 12-month
accumulation time scale, the Northeast is charac-
terized by the highest average drought frequency
with least median severity.

Examination of the added value of ensemble med-
ian GCM-forced NARCCAP RCMs against their host
GCM shows the following insights:

1. Precipitation pattern simulated by the RCMs
shows topographically induced fine-scale regional
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features and their variabilities, such as regional
precipitation patterns over the Southwest, West-
North Central, and the Northwest regions.

2. Analysis of mean annual precipitation in both
datasets shows that RCM produces larger pre-
cipitation over the Pacific Northwest and North-
east as compared to their host GCM. Analysis of
seasonal precipitation over different subregions
shows, except JJA, in all seasons, the variability
of RCMs are larger as compared to their host
GCM.

3. Neither NARCCAP nor their host GCMs are
able to simulate signals of the North American
Monsoon effectively and underestimate JJA pre-
cipitation over the Southwest.

Under non-stationary climate conditions, a credible
projection of drought at fine-scale resolution is crucial
for early warning, mitigation, and forming adaptation
strategies (Duncan et al., 2015). Although gridded pre-
cipitation and temperature data are routinely avail-
able at finer resolutions in observations and climate
models, the higher resolution drought indices have
limited availability through operational systems. In
the U.S., specifically, many states lack indicator data
at spatial and temporal scales needed for effective
monitoring (Fontaine et al., 2014). Further, uncer-
tainty in drought quantifications and associated pro-
jections stem from a vast array of datasets from
multiple sources that often limit our ability to frame
appropriate mitigation strategies (Bishop and Beier,
2013). The difference in performance between the
models and the observations primarily arises due to
different initial conditions, structural dissimilarity,
parameterization schemes, and the limited skills of
the RCMs to simulate large-scale atmospheric pattern.
To provide better regional assessment, the modeling
community should continuously evaluate RCM output
before it is used by the stakeholders for planning pur-
poses. We hope the analysis will assist modelers to
identify model deficiencies and further improve model
performance, which will be helpful in providing credi-
ble drought projections. A proper coordination between
NARCCAP modelers and the stakeholder community
is needed to improve parameterization schemes of the
models, so that the model is able to capture hydrologi-
cally relevant metrics (such as long-range persistence)
useful for end user applications. Data-driven methods
such as enhanced statistical downscaling schemes may
help to achieve this goal.
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