

NARCCAP

Overview of Climate Change Results

Linda O. Mearns National Center for Atmospheric Research

> Boulder, CO September 10-11, 2009

National Center for Atmospheric Research

GCM-RCM Matrix

001

AOGCMS

R	Cl	M	S

	GFDL	CGCM3	HADCIM3	CCSIVI
MM5			х	X1
RegCM	X1**	Х		
CRCM		X1**		X
HADRM	Х		X1**	
RSM	X1		X	
WRF		х		X1
*CAM3				x
*GFDL	X**			

-

1 = chosen first GCM *= time slice experiments Red = run completed ** = data loaded

Phase II (Climate Change) Results

Temperature and precipitation changes with model agreement (2080-2099 minus 1980-1999) A1B Scenario

Summer Temp Changes 2051-2070—1980-1999

WRF T change

Change in Winter Temperature Canadian Models

Global Model

CGCM3 Change in Seasonal Avg Temp

Regional Model

DJF 2040-2070 minus 1970-2000 °C

CRCM+CGCM3 Change in Seasonal Avg Temp

Change in Winter Precip Canadian Models

CGCM3 Change in Seasonal Avg Precip

CRCM+CGCM3 Change in Seasonal Avg Precip

HadRM3 Climate Change

Winter Temperature

Summer Temperature

HRM3+HADCM3 Change In Seasonal Avg Temp

-2	-1	0	1	2	3	5	

HRM3+HADCM3 Change In Seasonal Avg Temp

There is a consistency in the anticipated temperature change signal of HadRM3PvsHadCM3 NCAR

30W

30W

30W

RCM

Projected seasonal changes in temperature, between 1971-2000 and 2041-2070

HadRM3 Climate Change

Winter Precipitation

Summer Precipitation

HRM3+HADCM3 Change In Seasonal Avg Precip

HRM3+HADCM3 Change In Seasonal Avg Precip

Global Time Slice / RCM Comparison

at same resolution (50km)

Future-current Summer Temperatures

GFDL CM2.1

GFDL AM2.1

RegCM3 in GFDL

RegCM3 in GFDL

RegCM3 in GFDL % Change Precip - Winter

Why quantification of uncertainty is important

- Because the uncertainties are not going away any time soon
- Because we need to make decisions under conditions of uncertainty
- Because many resource managers need this information (but doesn't have to be probabilistic information – can be a range of scenarios)

Quantification of Uncertainty NCAR

- The four GCM simulations already 'situated' probabilistically based on earlier work (Tebaldi et al., 2004)
- RCM results nested in particular GCM would be represented by a probabilistic model (derived assuming probabilistic context of GCM simulation)
- Use of performance metrics to differentially weight the various model results

Probabilistic Information on Climate Change for Colorado

For 2040-2060 compared to current 1971-2000

Based on global model results from the IPCC archive (about 21 models)

Based on Tebaldi et al. 2005

Region used in computation

Probability of temperature changeners for Colorado, Spring- A2 scenario

Probability Density Function – a2 temp 2050 MAM

Change in Temperature Spring

Canadian Global Model

CGCM3, Change In Seasonal Avg Temp

MAM 1971-2000 minus 2041-2070 Celsius

Canadian Regional Model

CRCM+CGCM3 Change In Seasonal Avg Temp

MAM 2041-2070 minus 1971-2000 deg C

-2-101235

Probability of Change in NCAR Precipitation – A2 Scenario

Probability Density Function – a2_precip_2050_JJA

Change in Precipitation in Spring (%)

Canadian global model

Canadian regional model

-50 -30 -10 0 10 30 50

Spring Temperature Change NCAR 2041-2070 compared to 1971-2000

-2-101235

Change in Precipitation in Spring Regional Models

HadRM3 in HadCM3

RegCM3 in GFDL

CRCM in CGCM3

-50 -30 -10 0 10 30 50

Adaptation Planning for Water Resources

- Use NARCCAP scenarios, simple DS, statistical DS
- Determine value of different types of higher resolution scenarios for adaptation plans
- NCAR, USGS, B. Reclamation, and Western Water Initiative

NCAR

End

Probability of temperature changeners for Colorado - A2 scenario

